The thermooxidative degradation of four well known polymers, polyethylene (PE), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA), was carried out in a thermogravimetric (TG) analyser, at various temperatures (in the 473e533 K range), in isothermal heating conditions. The resulting set of experimental TG data was used to determine the apparent activation energy (Ea) of degradation through two isothermal literature methods, as well as through a very simple method we set up, based on the direct regression of the experimental mass loss data, in order to verify the general applicability of our method to various polymers. The results from different methods were in good agreement. Degradation experiments in dynamic heating conditions, which were also performed, gave Ea values in good agreement with those in isothermal heating conditions for PS, PC and PMMA, while for PE a large discrepancy was observed, which was discussed and interpreted. The results suggested the general applicability of our method to all polymers, independently on their structure and degradation mechanism. A long-term (about 13 months) isothermal degradation experiment was also carried out with the same polymers at relatively low temperature (423 K). Only PE and PS evidenced appreciable mass loss in the investigated period, but the experimental data were not in agreement with those from the short-term degradations at higher temperatures, thus suggesting different degradation kinetics, and a low reliability of the lifetime predictions for polymers in service based on experiments at higher temperatures.

The regression of isothermal TG data to directly draw degradation Ea values of polymers: a comparison with literature methods and an evaluation of lifetime predictions reliability

BLANCO, Ignazio;
2011-01-01

Abstract

The thermooxidative degradation of four well known polymers, polyethylene (PE), polystyrene (PS), polycarbonate (PC) and poly(methyl methacrylate) (PMMA), was carried out in a thermogravimetric (TG) analyser, at various temperatures (in the 473e533 K range), in isothermal heating conditions. The resulting set of experimental TG data was used to determine the apparent activation energy (Ea) of degradation through two isothermal literature methods, as well as through a very simple method we set up, based on the direct regression of the experimental mass loss data, in order to verify the general applicability of our method to various polymers. The results from different methods were in good agreement. Degradation experiments in dynamic heating conditions, which were also performed, gave Ea values in good agreement with those in isothermal heating conditions for PS, PC and PMMA, while for PE a large discrepancy was observed, which was discussed and interpreted. The results suggested the general applicability of our method to all polymers, independently on their structure and degradation mechanism. A long-term (about 13 months) isothermal degradation experiment was also carried out with the same polymers at relatively low temperature (423 K). Only PE and PS evidenced appreciable mass loss in the investigated period, but the experimental data were not in agreement with those from the short-term degradations at higher temperatures, thus suggesting different degradation kinetics, and a low reliability of the lifetime predictions for polymers in service based on experiments at higher temperatures.
2011
Degradation activation energy; Kinetics of polymer degradation; Lifetime prediction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/21994
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 38
social impact