A hydrodynamical model based on the theory of extended thermodynamics is presented for carrier transport in semiconductors. Closure relations for fluxes are obtained by employing the maximum entropy principle. The production terms are modeled by fitting the Monte Carlo data for homogeneously doped semiconductors. The mathematical properties of the model are studied. A suitable numerical method, which is a generalization of the Nessyahu-Tadmor scheme to the nonhomogeneous case, is provided. The validity of the constitutive relations has been assessed by comparing the numerical results with detailed Monte Carlo simulations.

Extended Hydrodynamical Model of Carrier Transport in Semiconductors

ROMANO, Vittorio;RUSSO, Giovanni
2000-01-01

Abstract

A hydrodynamical model based on the theory of extended thermodynamics is presented for carrier transport in semiconductors. Closure relations for fluxes are obtained by employing the maximum entropy principle. The production terms are modeled by fitting the Monte Carlo data for homogeneously doped semiconductors. The mathematical properties of the model are studied. A suitable numerical method, which is a generalization of the Nessyahu-Tadmor scheme to the nonhomogeneous case, is provided. The validity of the constitutive relations has been assessed by comparing the numerical results with detailed Monte Carlo simulations.
2000
hydrodynamical models for semiconductors; maximum entropy principle
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/22729
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 62
social impact