By virtue of barrier arguments we prove C^alpha-regularity up to the boundary for the weak solutions of a non-local nonlinear problem driven by the fractional p-Laplacian operator. The equation is boundedly inhomogeneous and the boundary conditions are of Dirichlet type. We employ different methods according to the singular (p < 2) of degenerate (p> 2) case.

Global Hölder regularity for the fractional p-Laplacian

MOSCONI, SUNRA JOHANNES NIKOLAJ;
2016-01-01

Abstract

By virtue of barrier arguments we prove C^alpha-regularity up to the boundary for the weak solutions of a non-local nonlinear problem driven by the fractional p-Laplacian operator. The equation is boundedly inhomogeneous and the boundary conditions are of Dirichlet type. We employ different methods according to the singular (p < 2) of degenerate (p> 2) case.
2016
Fractional p-Laplacian; fractional Sobolev spaces; global Holder regularity
File in questo prodotto:
File Dimensione Formato  
Global Hölder regularity.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 469.02 kB
Formato Adobe PDF
469.02 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/241397
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 162
  • ???jsp.display-item.citation.isi??? 146
social impact