By virtue of barrier arguments we prove C^alpha-regularity up to the boundary for the weak solutions of a non-local nonlinear problem driven by the fractional p-Laplacian operator. The equation is boundedly inhomogeneous and the boundary conditions are of Dirichlet type. We employ different methods according to the singular (p < 2) of degenerate (p> 2) case.
Titolo: | Global Hölder regularity for the fractional p-Laplacian | |
Autori interni: | ||
Data di pubblicazione: | 2016 | |
Rivista: | ||
Abstract: | By virtue of barrier arguments we prove C^alpha-regularity up to the boundary for the weak solutions of a non-local nonlinear problem driven by the fractional p-Laplacian operator. The equation is boundedly inhomogeneous and the boundary conditions are of Dirichlet type. We employ different methods according to the singular (p < 2) of degenerate (p> 2) case. | |
Handle: | http://hdl.handle.net/20.500.11769/241397 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Global Hölder regularity.pdf | Versione Editoriale (PDF) | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.