It is proved that if X is infinite-dimensional, then there exists an infinite dimensional space of X-valued measures which have infinite variation on sets of positive Lebesgue measure. In term of spaceability, it is also shown that ca(B; γX) n M, the measures with non-nite variation, contains a closed subspace. Other considerations concern the space of vector measures whose range is neither closed nor convex. All of those results extend in some sense theorems of Mu~noz Ferniandez et al. [Linear Algebra Appl. 428 (2008)].
Titolo: | Lineability and spaceability on vector-measure spaces | |
Autori interni: | ||
Data di pubblicazione: | 2013 | |
Rivista: | ||
Handle: | http://hdl.handle.net/20.500.11769/242654 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.