We prove the following result: let $K\subseteq \R^N$ be convex with nonempty interior, $X$ a topological space and $f\colon K\times X\to\R$ be concave and u.s.c. in the first variable and coercive and l.s.c. in the second. Then the (perturbed) strict minimax inequality \[ \sup_{\lambda\in K}\inf_{x\in X}f(\lambda,x)+g(\lambda)<\inf_{x\in X} \sup_{\lambda\in K}f(\lambda,x)+g(\lambda), \] for some continuous concave $g\colon K\to\R$, is equivalent to the following condition on superdifferentials: if $F(\lambda)=\inf_X f(\lambda, x)$, for some $\lambda\in\mathring{K}$ \[ \partial F(\lambda)\setminus \bigcup_{\substack{x\in X\\ f(\lambda, x) =F(\lambda)}}\partial f(\lambda, x)\neq\emptyset. \] As an application of this differential characterisation we prove a generalised version of a theorem of Ricceri, a criterion of regularity for marginal functions, and the fact that to check whether some perturbed minimax inequality holds, one can test with affine perturbation only.

A Differential characterisation of the Minimax Inequality

MOSCONI, SUNRA JOHANNES NIKOLAJ
2012-01-01

Abstract

We prove the following result: let $K\subseteq \R^N$ be convex with nonempty interior, $X$ a topological space and $f\colon K\times X\to\R$ be concave and u.s.c. in the first variable and coercive and l.s.c. in the second. Then the (perturbed) strict minimax inequality \[ \sup_{\lambda\in K}\inf_{x\in X}f(\lambda,x)+g(\lambda)<\inf_{x\in X} \sup_{\lambda\in K}f(\lambda,x)+g(\lambda), \] for some continuous concave $g\colon K\to\R$, is equivalent to the following condition on superdifferentials: if $F(\lambda)=\inf_X f(\lambda, x)$, for some $\lambda\in\mathring{K}$ \[ \partial F(\lambda)\setminus \bigcup_{\substack{x\in X\\ f(\lambda, x) =F(\lambda)}}\partial f(\lambda, x)\neq\emptyset. \] As an application of this differential characterisation we prove a generalised version of a theorem of Ricceri, a criterion of regularity for marginal functions, and the fact that to check whether some perturbed minimax inequality holds, one can test with affine perturbation only.
2012
Minimax Inequality; Concave Function; Marginal Function
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/247298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact