We propose a time discretization of the Navier–Stokes equations inspired by the theory of gradient flows. This discretization produces Leray/Hopf solutions in any dimension and suitable solutions in dimension 3. We also show that in dimension 3 and for initial datum in H1, the scheme converges to strong solutions in some interval [0,T) and, if the datum satisfies the classical smallness condition, it produces the smooth solution in [0,∞).

A Variational Approach to the Navier-Stokes equations

MOSCONI, SUNRA JOHANNES NIKOLAJ
2012-01-01

Abstract

We propose a time discretization of the Navier–Stokes equations inspired by the theory of gradient flows. This discretization produces Leray/Hopf solutions in any dimension and suitable solutions in dimension 3. We also show that in dimension 3 and for initial datum in H1, the scheme converges to strong solutions in some interval [0,T) and, if the datum satisfies the classical smallness condition, it produces the smooth solution in [0,∞).
2012
Navier-Stokes equation; Time discretization; Suitable Solution
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/247299
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact