We study properties of unions $X \cup Y$ of closed susbschemes of ${\pp}^r$ where $X$ is arithmetically Cohen-Macaulay of codimension $2.$ In particular, we are interested on the homological dimension of such a scheme. We apply our results to special schemes which arise as union of linear varieties.

A structure theorem for unions of complete intersections

RAGUSA, Alfio;ZAPPALA', Giuseppe
2012-01-01

Abstract

We study properties of unions $X \cup Y$ of closed susbschemes of ${\pp}^r$ where $X$ is arithmetically Cohen-Macaulay of codimension $2.$ In particular, we are interested on the homological dimension of such a scheme. We apply our results to special schemes which arise as union of linear varieties.
2012
Arithmetically Cohen Macaulay; Free resolutions; Homological dimension
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/249258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact