In this paper the following result is proved: Let $X$ be a reflexive real Banach space; $I\subseteq {\bf R}$ an interval; $\Phi:X\to {\bf R}$ a sequentially weakly lower semicontinuous $C1$ functional, bounded on each bounded subset of $X$, whose derivative admits a continuous inverse on $X^*$; $J:X\to {\bf R}$ a $C1$ functional with compact derivative. Assume that $$\lim_{\|x\|\to +\infty}(\Phi(x)+\lambda J(x))=+\infty $$ for all $\lambda\in I$, and that there exists $\rho\in {\bf R}$ such that $$\sup_{\lambda\in I}\inf_{x\in X}(\Phi(x)+ \lambda(J(x)+\rho))<\inf_{x\in X} \sup_{\lambda\in I}(\Phi(x)+\lambda(J(x)+\rho))\ .$$ Then, there exist a non-empty open set $A\subseteq I$ and a positive real number $r$ with the following property: for every $\lambda\in A$ and every $C1$ functional $\Psi:X\to {\bf R}$ with compact derivative, there exists $\delta>0$ such that, for each $\mu\in [0,\delta]$, the equation $$\Phi'(x)+\lambda J'(x)+\mu\Psi'(x)=0$$ has at least three solutions in $X$ whose norms are less than $r$

A three critical points theorem revisited

RICCERI, Biagio
2009-01-01

Abstract

In this paper the following result is proved: Let $X$ be a reflexive real Banach space; $I\subseteq {\bf R}$ an interval; $\Phi:X\to {\bf R}$ a sequentially weakly lower semicontinuous $C1$ functional, bounded on each bounded subset of $X$, whose derivative admits a continuous inverse on $X^*$; $J:X\to {\bf R}$ a $C1$ functional with compact derivative. Assume that $$\lim_{\|x\|\to +\infty}(\Phi(x)+\lambda J(x))=+\infty $$ for all $\lambda\in I$, and that there exists $\rho\in {\bf R}$ such that $$\sup_{\lambda\in I}\inf_{x\in X}(\Phi(x)+ \lambda(J(x)+\rho))<\inf_{x\in X} \sup_{\lambda\in I}(\Phi(x)+\lambda(J(x)+\rho))\ .$$ Then, there exist a non-empty open set $A\subseteq I$ and a positive real number $r$ with the following property: for every $\lambda\in A$ and every $C1$ functional $\Psi:X\to {\bf R}$ with compact derivative, there exists $\delta>0$ such that, for each $\mu\in [0,\delta]$, the equation $$\Phi'(x)+\lambda J'(x)+\mu\Psi'(x)=0$$ has at least three solutions in $X$ whose norms are less than $r$
File in questo prodotto:
File Dimensione Formato  
revisited.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 561.48 kB
Formato Adobe PDF
561.48 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/24955
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 180
  • ???jsp.display-item.citation.isi??? 168
social impact