Let R be a commutative noetherian graded ring. In R[Y1,..., Ym] we consider the linear forms a(i) = Sigma(m)(j=1)a(ji)Y(j), 1 <= i <= n, with a(ji) homogeneous elements of R. We state a necessary and sufficient condition, in terms of *grades of the determinantal ideals of the matrix A = (a(ji)), for the ideal (a(1), ...,a(n)) to be a *complete intersection of *grade n in R[Y1,... , Ym].

A NOTE ON *COMPLETE INTERSECTIONS GENERATED BY LINEAR FORMS

LA BARBIERA, MONICA
2014

Abstract

Let R be a commutative noetherian graded ring. In R[Y1,..., Ym] we consider the linear forms a(i) = Sigma(m)(j=1)a(ji)Y(j), 1 <= i <= n, with a(ji) homogeneous elements of R. We state a necessary and sufficient condition, in terms of *grades of the determinantal ideals of the matrix A = (a(ji)), for the ideal (a(1), ...,a(n)) to be a *complete intersection of *grade n in R[Y1,... , Ym].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/252937
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact