Antipsychotics are the drugs of choice for the treatment of schizophrenia. Besides blocking monoamine receptors, these molecules affect intracellular signaling mechanisms, resulting in long-term synaptic alterations. Western blot analysis was used to investigate the effect of long-term administration (14 days) with the typical antipsychotic haloperidol and the atypical olanzapine on the expression and phosphorylation state of extracellular signal-related kinases (ERKs) 1 and 2 (ERK1/2), proteins involved in the regulation of multiple intracellular signaling cascades. A single injection of both drugs produced an overall decrease in ERK1/2 phosphorylation in different subcellular compartments. Conversely, long-term treatment with olanzapine, but not haloperidol, increased ERK1/2 phosphorylation in the prefrontal cortex in a compartment-specific and time-dependent fashion. In fact, ERK1/2 phosphorylation was elevated in the nuclear and cytosolic fractions 2 h after the last drug administration, whereas it was enhanced only in the membrane fraction when the animals were killed 24 h after the last injection. This effect might be the result of an activation of the mitogen-activated protein kinase pathway, because the phosphorylation of extracellular signal-regulated kinase kinase 1/2 was also increased by long-term olanzapine administration. Our data demonstrate that long-term exposure to olanzapine dynamically regulates ERK1/2 phosphorylation in different subcellular compartments, revealing a novel mechanism of action for this atypical agent and pointing to temporally separated locations of signaling events mediated by these kinases after long-term olanzapine administration

Long-term exposure to the atypical antipsychotic olanzapine differently up-regulates extracellular signal-regulated kinases 1 and 2 phosphorylation in subcellular compartments of rat prefrontal cortex

DRAGO, Filippo;
2006-01-01

Abstract

Antipsychotics are the drugs of choice for the treatment of schizophrenia. Besides blocking monoamine receptors, these molecules affect intracellular signaling mechanisms, resulting in long-term synaptic alterations. Western blot analysis was used to investigate the effect of long-term administration (14 days) with the typical antipsychotic haloperidol and the atypical olanzapine on the expression and phosphorylation state of extracellular signal-related kinases (ERKs) 1 and 2 (ERK1/2), proteins involved in the regulation of multiple intracellular signaling cascades. A single injection of both drugs produced an overall decrease in ERK1/2 phosphorylation in different subcellular compartments. Conversely, long-term treatment with olanzapine, but not haloperidol, increased ERK1/2 phosphorylation in the prefrontal cortex in a compartment-specific and time-dependent fashion. In fact, ERK1/2 phosphorylation was elevated in the nuclear and cytosolic fractions 2 h after the last drug administration, whereas it was enhanced only in the membrane fraction when the animals were killed 24 h after the last injection. This effect might be the result of an activation of the mitogen-activated protein kinase pathway, because the phosphorylation of extracellular signal-regulated kinase kinase 1/2 was also increased by long-term olanzapine administration. Our data demonstrate that long-term exposure to olanzapine dynamically regulates ERK1/2 phosphorylation in different subcellular compartments, revealing a novel mechanism of action for this atypical agent and pointing to temporally separated locations of signaling events mediated by these kinases after long-term olanzapine administration
File in questo prodotto:
File Dimensione Formato  
Long-term exposure to the atypical antipsychotic olanzapine.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 305.33 kB
Formato Adobe PDF
305.33 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/26209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 31
social impact