In this work we compare the B electrical activity in crystalline (c-Ge) and preamorphized Ge (PAI-Ge), in order to elucidate the activation mechanisms involved in the two cases and evidence the possible advantages of an approach over to the other. With this aim, we independently measured the hole fluence and the sheet resistance, thus extracting the carrier mobility, as a function of the implanted B fluence. In particular, we evidenced that it is possible to reproduce the metastability of the PAI process implanting B in c-Ge at very high fluences. However, by properly choosing the implantation conditions in c-Ge, in such a way to disable dynamic annealing during implantation, the activation of B can be raised up to the level attainable in PAI-Ge also for lower B fluences. Finally, the thermal evolution of the formed junction was tested, evidencing a high stability under annealing up to 550 °C in both c- and PAI-Ge. © 2008 Elsevier B.V. All rights reserved.

B electrical activation in crystalline and preamorphized Ge

BRUNO, ELENA;MIRABELLA, SALVATORE;GRIMALDI, Maria Grazia
2008-01-01

Abstract

In this work we compare the B electrical activity in crystalline (c-Ge) and preamorphized Ge (PAI-Ge), in order to elucidate the activation mechanisms involved in the two cases and evidence the possible advantages of an approach over to the other. With this aim, we independently measured the hole fluence and the sheet resistance, thus extracting the carrier mobility, as a function of the implanted B fluence. In particular, we evidenced that it is possible to reproduce the metastability of the PAI process implanting B in c-Ge at very high fluences. However, by properly choosing the implantation conditions in c-Ge, in such a way to disable dynamic annealing during implantation, the activation of B can be raised up to the level attainable in PAI-Ge also for lower B fluences. Finally, the thermal evolution of the formed junction was tested, evidencing a high stability under annealing up to 550 °C in both c- and PAI-Ge. © 2008 Elsevier B.V. All rights reserved.
2008
Amorphous; Boron; Crystal; Damage; Electrical activation; Germanium; Materials Science (all); Condensed Matter Physics; Mechanics of Materials; Mechanical Engineering
File in questo prodotto:
File Dimensione Formato  
BrunoMSEB08.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 370.85 kB
Formato Adobe PDF
370.85 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/298145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact