The analysis of the performance of photovoltaic (PV) installations mounted on a floating platform is performed. Different design solutions for increasing the efficiency and cost effectiveness of floating photovoltaic (FPV) plants are presented and discussed. Specifically, FPV solutions that exploit the advantages of additional features such as tracking, cooling and concentration, are presented. The results of experimental tests are reported and they show a considerable increase in efficiency due to the positive tracking and cooling effects. Gains due to the use of flat reflectors are also analyzed. Finally, the possibility of exploiting the floating structure on water in order to develop an integrated air storage system is presented.
Floating photovoltaic plants: Performance analysis and design solutions
TINA, Giuseppe Marco
;VENTURA, CRISTINA
2018-01-01
Abstract
The analysis of the performance of photovoltaic (PV) installations mounted on a floating platform is performed. Different design solutions for increasing the efficiency and cost effectiveness of floating photovoltaic (FPV) plants are presented and discussed. Specifically, FPV solutions that exploit the advantages of additional features such as tracking, cooling and concentration, are presented. The results of experimental tests are reported and they show a considerable increase in efficiency due to the positive tracking and cooling effects. Gains due to the use of flat reflectors are also analyzed. Finally, the possibility of exploiting the floating structure on water in order to develop an integrated air storage system is presented.File | Dimensione | Formato | |
---|---|---|---|
Floating photovoltaic plants Performance analysis and design solutions.pdf
solo gestori archivio
Descrizione: Articolo principale
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.93 MB
Formato
Adobe PDF
|
1.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.