This Letter reports a study of the highly debated 10Li structure through the d(Li-9,p)Li-10 one-neutron transfer reaction at 100 MeV. The Li-10 energy spectrum is measured up to 4.6 MeV and angular distributions corresponding to different excitation energy regions are reported for the first time. The comparison between data and theoretical predictions, including pairing correlation effects, shows the existence of a p(1/2) resonance at 0.45 +/- 0.03 MeV excitation energy, while no evidence for a significant s-wave contribution close to the threshold energy is observed. Moreover, two high-lying structures are populated at 1.5 and 2.9 MeV. The corresponding angular distributions suggest a significant s(1/2) partial-wave contribution for the 1.5 MeV structure and a mixing of configurations at higher energy, with the d(5/2) partial-wave contributing the most to the cross section.

Investigation of the Li-10 shell inversion by neutron continuum transfer reaction

CAVALLARO, MANUELA;DE NAPOLI, MARZIO;CAPPUZZELLO, FRANCESCO;BONDI', Mariangela;CARBONE, DIANA;CUNSOLO, Angelo;FOTI, Antonino;
2017-01-01

Abstract

This Letter reports a study of the highly debated 10Li structure through the d(Li-9,p)Li-10 one-neutron transfer reaction at 100 MeV. The Li-10 energy spectrum is measured up to 4.6 MeV and angular distributions corresponding to different excitation energy regions are reported for the first time. The comparison between data and theoretical predictions, including pairing correlation effects, shows the existence of a p(1/2) resonance at 0.45 +/- 0.03 MeV excitation energy, while no evidence for a significant s-wave contribution close to the threshold energy is observed. Moreover, two high-lying structures are populated at 1.5 and 2.9 MeV. The corresponding angular distributions suggest a significant s(1/2) partial-wave contribution for the 1.5 MeV structure and a mixing of configurations at higher energy, with the d(5/2) partial-wave contributing the most to the cross section.
File in questo prodotto:
File Dimensione Formato  
Cavallaro_PhysRevLett.118.012701.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 291.83 kB
Formato Adobe PDF
291.83 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/300373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact