We describe high-resolution observations of a GOES B-class flare characterized by a circular ribbon at the chromospheric level, corresponding to the network at the photospheric level. We interpret the flare as a consequence of a magnetic reconnection event that occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: (1) a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; (2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1″-2″; (3) the kernels with a stronger intensity emission were located at the outer footpoint of the darker filaments, departing radially from the center of the supergranular cell; (4) these kernels started to brighten sequentially in clockwise direction; and (5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low-energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved in the event, we argue that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.

Observation of a 3D Magnetic Null Point

FALCO, MARIACHIARA;GUGLIELMINO, SALVATORE;MURABITO, MARIARITA
2017-01-01

Abstract

We describe high-resolution observations of a GOES B-class flare characterized by a circular ribbon at the chromospheric level, corresponding to the network at the photospheric level. We interpret the flare as a consequence of a magnetic reconnection event that occurred at a three-dimensional (3D) coronal null point located above the supergranular cell. The potential field extrapolation of the photospheric magnetic field indicates that the circular chromospheric ribbon is cospatial with the fan footpoints, while the ribbons of the inner and outer spines look like compact kernels. We found new interesting observational aspects that need to be explained by models: (1) a loop corresponding to the outer spine became brighter a few minutes before the onset of the flare; (2) the circular ribbon was formed by several adjacent compact kernels characterized by a size of 1″-2″; (3) the kernels with a stronger intensity emission were located at the outer footpoint of the darker filaments, departing radially from the center of the supergranular cell; (4) these kernels started to brighten sequentially in clockwise direction; and (5) the site of the 3D null point and the shape of the outer spine were detected by RHESSI in the low-energy channel between 6.0 and 12.0 keV. Taking into account all these features and the length scales of the magnetic systems involved in the event, we argue that the low intensity of the flare may be ascribed to the low amount of magnetic flux and to its symmetric configuration.
2017
Sun: chromosphere; Sun: flares; Sun: magnetic fields; Sun: photosphere; Astronomy and Astrophysics; Space and Planetary Science
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/303047
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact