Atmospheric parameters, Such as pressure (P), temperature (T) and density (rho proportional to P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have Studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a similar to 10% seasonal modulation and similar to 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and rho. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory. (C) 2009 Elsevier B.V. All rights reserved. RI De Domenico, Manlio/D-1966-2009; Dias, Sandra/F-8134-2010; Caramete, Laurentiu/C-2328-2011; Dutan, Ioana/C-2337-2011; Aramo, Carla/D-4317-2011; Beatty, James/D-9310-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Venters, Tonia/D-2936-2012; Pavlidou, Vasiliki/C-2944-2011; Fauth, Anderson/F-9570-2012; Todero Peixoto, Carlos Jose/G-3873-2012; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Petrolini, Alessandro/H-3782-2011; Miele, Gennaro/F-3628-2010; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; martello, daniele/J-3131-2012; Valino, Ines/J-8324-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; Anjos, Joao/C-8335-2013; Sarkar, Subir/G-5978-2011; Schussler, Fabian/G-5313-2013 OI Shellard, Ronald/0000-0002-2983-1815; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Sarkar, Subir/0000-0002-3542-858X; Schussler, Fabian/0000-0003-1500-6571

Atmospheric parameters, Such as pressure (P), temperature (T) and density (rho proportional to P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have Studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a similar to 10% seasonal modulation and similar to 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and rho. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory. (C) 2009 Elsevier B.V. All rights reserved.

Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory

Caruso R;D'Urso D;Pirronello V;Strazzeri E;Insolia Antonio
2009

Abstract

Atmospheric parameters, Such as pressure (P), temperature (T) and density (rho proportional to P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have Studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a similar to 10% seasonal modulation and similar to 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and rho. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory. (C) 2009 Elsevier B.V. All rights reserved. RI De Domenico, Manlio/D-1966-2009; Dias, Sandra/F-8134-2010; Caramete, Laurentiu/C-2328-2011; Dutan, Ioana/C-2337-2011; Aramo, Carla/D-4317-2011; Beatty, James/D-9310-2011; Pesce, Roberto/G-5791-2011; Kemp, Ernesto/H-1502-2011; Chiavassa, Andrea/A-7597-2012; Verzi, Valerio/B-1149-2012; Chinellato, Carola Dobrigkeit /F-2540-2011; Venters, Tonia/D-2936-2012; Pavlidou, Vasiliki/C-2944-2011; Fauth, Anderson/F-9570-2012; Todero Peixoto, Carlos Jose/G-3873-2012; de souza, Vitor/D-1381-2012; Shellard, Ronald/G-4825-2012; Petrolini, Alessandro/H-3782-2011; Miele, Gennaro/F-3628-2010; Muller, Marcio Aparecido/H-9112-2012; fulgione, walter/I-5232-2012; D'Urso, Domenico/I-5325-2012; Bleve, Carla/J-2521-2012; martello, daniele/J-3131-2012; Valino, Ines/J-8324-2012; Brogueira, Pedro/K-3868-2012; Chinellato, Jose Augusto/I-7972-2012; Tamburro, Alessio/A-5703-2013; Falcke, Heino/H-5262-2012; Arneodo, Francesco/B-8076-2013; Anjos, Joao/C-8335-2013; Sarkar, Subir/G-5978-2011; Schussler, Fabian/G-5313-2013 OI Shellard, Ronald/0000-0002-2983-1815; D'Urso, Domenico/0000-0002-8215-4542; Brogueira, Pedro/0000-0001-6069-4073; Falcke, Heino/0000-0002-2526-6724; Arneodo, Francesco/0000-0002-1061-0510; Sarkar, Subir/0000-0002-3542-858X; Schussler, Fabian/0000-0003-1500-6571
Atmospheric parameters, Such as pressure (P), temperature (T) and density (rho proportional to P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have Studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a similar to 10% seasonal modulation and similar to 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and rho. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory. (C) 2009 Elsevier B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/30605
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 43
social impact