Permeability of gases in polymers depends strongly upon the polymer structure, the gas type, as well as the conditions of temperature and film thickness. The in-use temperature and thickness of the polymer membrane can play the most important role on preservation and prolongation of food shelf-life. In this work the gas transmission parameters of six Bi-axially Oriented Polypropylene (BOPP) films were investigated as a function of temperature, gas type and thickness. O2, CO2, N2, N2O, C2H4, Air (79%N2/21%O2) and Modified Atmosphere (MA) of 79%N2O/21%O2 were used as test gas. In order to understand the kinetic of the process, by the activation energy determination, samples were tested at a different temperature, from 10 °C to 40 °C. Gas Transmission Rate (GTR), solubility (S) and diffusion (D) relationship was investigated. The gas/thickness/temperature correlation was reflected in the obtained perm-selectivity ratios and a good linear correlation was found only at 23 °C. Deviations recorded were attributed to temperature fluctuations. Gas transmission process follows the Arrhenius model while the solubility/diffusion process shows consistent deviation, correlated to the temperature and the thickness of the film. By Differential Scanning Calorimetry (DSC) a different crystallinity percentage was recorded, whose influence was evidenced only in the sorption/diffusion processes. The melting temperature remained unchanged. FT-IR Spectroscopy was also carried out to confirm the morphology.

Correlation amongst gas barrier behaviour, temperature and thickness in BOPP films for food packaging usage: A lab-scale testing experience

SIRACUSA, VALENTINA;INGRAO, CARLO
2017-01-01

Abstract

Permeability of gases in polymers depends strongly upon the polymer structure, the gas type, as well as the conditions of temperature and film thickness. The in-use temperature and thickness of the polymer membrane can play the most important role on preservation and prolongation of food shelf-life. In this work the gas transmission parameters of six Bi-axially Oriented Polypropylene (BOPP) films were investigated as a function of temperature, gas type and thickness. O2, CO2, N2, N2O, C2H4, Air (79%N2/21%O2) and Modified Atmosphere (MA) of 79%N2O/21%O2 were used as test gas. In order to understand the kinetic of the process, by the activation energy determination, samples were tested at a different temperature, from 10 °C to 40 °C. Gas Transmission Rate (GTR), solubility (S) and diffusion (D) relationship was investigated. The gas/thickness/temperature correlation was reflected in the obtained perm-selectivity ratios and a good linear correlation was found only at 23 °C. Deviations recorded were attributed to temperature fluctuations. Gas transmission process follows the Arrhenius model while the solubility/diffusion process shows consistent deviation, correlated to the temperature and the thickness of the film. By Differential Scanning Calorimetry (DSC) a different crystallinity percentage was recorded, whose influence was evidenced only in the sorption/diffusion processes. The melting temperature remained unchanged. FT-IR Spectroscopy was also carried out to confirm the morphology.
2017
BOPP films; Gas-barrier behaviour; Modified atmosphere packaging; Temperature; Thickness; Polymers and Plastics; Organic Chemistry
File in questo prodotto:
File Dimensione Formato  
BOPP film.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/308373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 19
social impact