A result on the existence and uniqueness of metric projection for certain sets is proved, by means of a saddle point theorem. A conjecture, based on such a result and aiming for the construction of a nonconvex Chebyshev set in a Hilbert space, is presented.
Well posed optimization problems and non--convex Chebyshev sets in Hilbert spaces
FARACI, FRANCESCA;
2008-01-01
Abstract
A result on the existence and uniqueness of metric projection for certain sets is proved, by means of a saddle point theorem. A conjecture, based on such a result and aiming for the construction of a nonconvex Chebyshev set in a Hilbert space, is presented.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FI_SIAMJO08(nearest).pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
123.61 kB
Formato
Adobe PDF
|
123.61 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.