A result on the existence and uniqueness of metric projection for certain sets is proved, by means of a saddle point theorem. A conjecture, based on such a result and aiming for the construction of a nonconvex Chebyshev set in a Hilbert space, is presented.

Well posed optimization problems and non--convex Chebyshev sets in Hilbert spaces

FARACI, FRANCESCA;
2008-01-01

Abstract

A result on the existence and uniqueness of metric projection for certain sets is proved, by means of a saddle point theorem. A conjecture, based on such a result and aiming for the construction of a nonconvex Chebyshev set in a Hilbert space, is presented.
File in questo prodotto:
File Dimensione Formato  
FI_SIAMJO08(nearest).pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 123.61 kB
Formato Adobe PDF
123.61 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/31161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact