A result on the existence and uniqueness of metric projection for certain sets is proved, by means of a saddle point theorem. A conjecture, based on such a result and aiming for the construction of a nonconvex Chebyshev set in a Hilbert space, is presented.

Well posed optimization problems and non--convex Chebyshev sets in Hilbert spaces

FARACI, FRANCESCA;
2008

Abstract

A result on the existence and uniqueness of metric projection for certain sets is proved, by means of a saddle point theorem. A conjecture, based on such a result and aiming for the construction of a nonconvex Chebyshev set in a Hilbert space, is presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/31161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact