We have measured the photocatalytic water splitting activity of several titania colloids, modified by nanosecond pulsed laser irradiation. Photocatalysis has been tested using UV and visible light. We have found that laser irradiation increases the hydrogen production efficiency up to a factor of three for anatase, rutile and P25. A hydrogen production rate as high as 30 mmol g1 h1 has been obtained with good stability, tested by repeated runs. The chemical and morphological properties of the nanoparticles have been studied by electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy, showing that laser irradiation promotes the formation of disordered surface state and lattice distortion which could be responsible for the observed enhanced photocatalytic activity.
Laser processing of TiO2 colloids for an enhanced photocatalytic water splitting activity
FILICE, SIMONA;COMPAGNINI, Giuseppe Romano;FIORENZA, ROBERTO;SCIRE', Salvatore;D'URSO, LUISA;FRAGALA', Maria Elena;
2017-01-01
Abstract
We have measured the photocatalytic water splitting activity of several titania colloids, modified by nanosecond pulsed laser irradiation. Photocatalysis has been tested using UV and visible light. We have found that laser irradiation increases the hydrogen production efficiency up to a factor of three for anatase, rutile and P25. A hydrogen production rate as high as 30 mmol g1 h1 has been obtained with good stability, tested by repeated runs. The chemical and morphological properties of the nanoparticles have been studied by electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy, showing that laser irradiation promotes the formation of disordered surface state and lattice distortion which could be responsible for the observed enhanced photocatalytic activity.File | Dimensione | Formato | |
---|---|---|---|
JCIS.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.