Using the connections among almost complete intersection schemes, arithmetically Gorenstein schemes and schemes that are a union of complete intersections, we give a structure theorem for the arithmetically Cohen-Macaulay union of two complete intersections of codimension 2, of type (d1, e1) and (d2, e2) such that min[d1, e1] â min[d2, e2]. We apply the results for computing Hilbert functions and graded Betti numbers for such schemes.
Titolo: | A structure theorem for most unions of complete intersections |
Autori interni: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11769/312321 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
A structure theorem for most unions of complete intersections.pdf | Versione Editoriale (PDF) | Administrator |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.