We introduce a family of Artinian Gorenstein algebras, whose combinatorial structure characterizes the ones presented by quadrics. Under certain hypotheses these algebras have non-unimodal Hilbert vector. In particular we provide families of counterexamples to the conjecture that Artinian Gorenstein algebras presented by quadrics should satisfy the weak Lefschetz property.

Lefschetz properties for Artinian Gorenstein algebras presented by quadrics

GIUSEPPE ZAPPALA'
2018-01-01

Abstract

We introduce a family of Artinian Gorenstein algebras, whose combinatorial structure characterizes the ones presented by quadrics. Under certain hypotheses these algebras have non-unimodal Hilbert vector. In particular we provide families of counterexamples to the conjecture that Artinian Gorenstein algebras presented by quadrics should satisfy the weak Lefschetz property.
File in questo prodotto:
File Dimensione Formato  
Lefschetz properties for artinia Gerenstein algebras presented by quadrics.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 197.85 kB
Formato Adobe PDF
197.85 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/315235
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact