Rho-associated kinases (ROCK1 and ROCK2) are important regulators of the actin cytoskeleton and endothelial nitric oxide synthase (eNOS). Because the phosphorylation of eukaryotic elongation factor-1A1 (eEF1A1) by ROCK2 is critical for eNOS expression, we hypothesized that this molecular pathway may play a critical role in neuroprotection following focal cerebral ischemia.Methods and Results:Adult male wild-type (WT) and mutant ROCK2 and eNOS-/-mice were subjected to middle cerebral artery occlusion (MCAO), and cerebral infarct size, neurological deficit and absolute cerebral blood flow were measured. In addition, aortic endothelium-dependent response to acetylcholine, NG-nitro-L-arginine methyl ester (L-NAME) and sodium nitroprusside were assessed ex vivo. Endothelial cells from mouse brain or heart were used to measure eNOS and eEF1A activity, as well as NO production and eNOS mRNA half-life. In global hemizygous ROCK2+/-and endothelial-specific EC-ROCK2-/-mice, eNOS mRNA stability and eNOS expression were increased, which correlated with enhanced endothelium-dependent relaxation and neuroprotection following focal cerebral ischemia. Indeed, when ROCK2+/-mice were place on an eNOS-/-background, the neuroprotective effects observed in ROCK2+/-mice were abolished.
Neuroprotection Mediated by Upregulation of Endothelial Nitric Oxide Synthase in Rho-Associated, Coiled-Coil-Containing Kinase 2 Deficient Mice
Salomone, Salvatore;
2018-01-01
Abstract
Rho-associated kinases (ROCK1 and ROCK2) are important regulators of the actin cytoskeleton and endothelial nitric oxide synthase (eNOS). Because the phosphorylation of eukaryotic elongation factor-1A1 (eEF1A1) by ROCK2 is critical for eNOS expression, we hypothesized that this molecular pathway may play a critical role in neuroprotection following focal cerebral ischemia.Methods and Results:Adult male wild-type (WT) and mutant ROCK2 and eNOS-/-mice were subjected to middle cerebral artery occlusion (MCAO), and cerebral infarct size, neurological deficit and absolute cerebral blood flow were measured. In addition, aortic endothelium-dependent response to acetylcholine, NG-nitro-L-arginine methyl ester (L-NAME) and sodium nitroprusside were assessed ex vivo. Endothelial cells from mouse brain or heart were used to measure eNOS and eEF1A activity, as well as NO production and eNOS mRNA half-life. In global hemizygous ROCK2+/-and endothelial-specific EC-ROCK2-/-mice, eNOS mRNA stability and eNOS expression were increased, which correlated with enhanced endothelium-dependent relaxation and neuroprotection following focal cerebral ischemia. Indeed, when ROCK2+/-mice were place on an eNOS-/-background, the neuroprotective effects observed in ROCK2+/-mice were abolished.File | Dimensione | Formato | |
---|---|---|---|
Upregulation of Endothelial Nitric Oxide Synthase in Rho-Associated.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Dimensione
2.08 MB
Formato
Adobe PDF
|
2.08 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.