The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.

Roughness evolution in dewetted Ag and Pt nanoscale films

Ruffino, F.
;
Grimaldi, M. G.
2018-01-01

Abstract

The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.
2018
Ag; Atomic force microscopy; Dewetting; Pt; Roughness; Materials Science (all); Condensed Matter Physics; Electrical and Electronic Engineering
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0749603617326113-main.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 4.75 MB
Formato Adobe PDF
4.75 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/316457
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact