Given a collection of graphs H, a uniformly resolvable H-design of order v is a decomposition of the edges of Kv into isomorphic copies of graphs from H (also called blocks) in such a way that all blocks in a given parallel class are isomorphic to the same graph from H. We consider the case H = (K1;2;K1;3), and prove that the necessary conditions on the existence of such designs are also sufficient.
Titolo: | On uniformly resolvable (K_(1,2);K_(1,3)-designs |
Autori interni: | |
Data di pubblicazione: | 2018 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11769/316561 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.