Human norovirus causes approximately 219,000 deaths annually, yet there are currently no antivirals available. A virtual screening of commercially available drug-like compounds (~300,000) was performed on the suramin and PPNDS binding-sites of the norovirus RNA-dependent RNA polymerase (RdRp). Selected compounds (n = 62) were examined for inhibition of norovirus RdRp activity using an in vitro transcription assay. Eight candidates demonstrated RdRp inhibition (>25% inhibition at 10 µM), which was confirmed using a gel-shift RdRp assay for two of them. The two molecules were identified as initial hits and selected for structure-activity relationship studies, which resulted in the synthesis of novel compounds that were examined for inhibitory activity. Five compounds inhibited human norovirus RdRp activity (>50% at 10 µM), with the best candidate, 54, demonstrating an IC50 of 5.6 µM against the RdRp and a CC50 of 62.8 µM. Combinational treatment of 54 and the known RdRp site-B inhibitor PPNDS revealed antagonism, indicating that 54 binds in the same binding pocket. Two RdRps with mutations (Q414A and R419A) previously shown to be critical for the binding of site-B compounds had no effect on inhibition, suggesting 54 interacts with distinct site-B residues. This study revealed the novel scaffold 54 for further development as a norovirus antiviral.

In silico screening for human norovirus antivirals reveals a novel non-nucleoside inhibitor of the viral polymerase

Salvatore Guccione;
2018

Abstract

Human norovirus causes approximately 219,000 deaths annually, yet there are currently no antivirals available. A virtual screening of commercially available drug-like compounds (~300,000) was performed on the suramin and PPNDS binding-sites of the norovirus RNA-dependent RNA polymerase (RdRp). Selected compounds (n = 62) were examined for inhibition of norovirus RdRp activity using an in vitro transcription assay. Eight candidates demonstrated RdRp inhibition (>25% inhibition at 10 µM), which was confirmed using a gel-shift RdRp assay for two of them. The two molecules were identified as initial hits and selected for structure-activity relationship studies, which resulted in the synthesis of novel compounds that were examined for inhibitory activity. Five compounds inhibited human norovirus RdRp activity (>50% at 10 µM), with the best candidate, 54, demonstrating an IC50 of 5.6 µM against the RdRp and a CC50 of 62.8 µM. Combinational treatment of 54 and the known RdRp site-B inhibitor PPNDS revealed antagonism, indicating that 54 binds in the same binding pocket. Two RdRps with mutations (Q414A and R419A) previously shown to be critical for the binding of site-B compounds had no effect on inhibition, suggesting 54 interacts with distinct site-B residues. This study revealed the novel scaffold 54 for further development as a norovirus antiviral.
File in questo prodotto:
File Dimensione Formato  
Ferla_etal_2018.pdf

accesso aperto

Descrizione: Articolo Principale
Tipologia: Versione Editoriale (PDF)
Dimensione 5.53 MB
Formato Adobe PDF
5.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/316911
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact