We prove that, whenever we pick real numbers a, b such that 0 < b < a < 1, a+b>1,anda3+b3 =1,theneveryboundedlinearoperatorfroml2 to Xa,b and from Xa,b to l2 must be compact, where Xa,b is the Bourgain–Delbaen space.
Operators on Bourgain-Delbaen's spaces
Puglisi, D.
2018-01-01
Abstract
We prove that, whenever we pick real numbers a, b such that 0 < b < a < 1, a+b>1,anda3+b3 =1,theneveryboundedlinearoperatorfroml2 to Xa,b and from Xa,b to l2 must be compact, where Xa,b is the Bourgain–Delbaen space.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
memocs-v6-n1-p03-s.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Dimensione
434.26 kB
Formato
Adobe PDF
|
434.26 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.