In highly viscous electron systems such as high-quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools. It has also been shown that, although both effects originate from high electron viscosity, a negative voltage drop does not principally require current backflow. In this work, we study the role of geometry on viscous flow and show that confinement effects and relative positions of injector and collector contacts play a pivotal role in the occurrence of whirlpools. Certain geometries may exhibit backflow at arbitrarily small values of the electron viscosity, whereas others require a specific threshold value for whirlpools to emerge.

Electron hydrodynamics dilemma: Whirlpools or no whirlpools

Pellegrino F. M. D.
;
Marco Polini
2016-01-01

Abstract

In highly viscous electron systems such as high-quality graphene above liquid nitrogen temperature, a linear response to applied electric current becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena including negative nonlocal resistance and current whirlpools. It has also been shown that, although both effects originate from high electron viscosity, a negative voltage drop does not principally require current backflow. In this work, we study the role of geometry on viscous flow and show that confinement effects and relative positions of injector and collector contacts play a pivotal role in the occurrence of whirlpools. Certain geometries may exhibit backflow at arbitrarily small values of the electron viscosity, whereas others require a specific threshold value for whirlpools to emerge.
File in questo prodotto:
File Dimensione Formato  
Pellegrino_PhysRevB.94.155414.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 771.4 kB
Formato Adobe PDF
771.4 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/318290
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 74
social impact