In this paper a procedure for the static identification and reconstruction of concentrated damage distribution in beam-like structures, implemented in a dedicated software, is presented. The proposed damage identification strategy relies on the solution of an optimisation problem, by means of a genetic algorithm, which exploits the closed form solution based on the distribution theory of multi-cracked beams subjected to static loads. Precisely, the adoption of the closed-form solution allows a straightforward evolution of an initial random population of chromosomes, representing different damage distributions along the beam axis, towards the fittest and selected as the sought solution. This method allows the identification of the position and intensity of an arbitrary number of cracks and is limited only by the amount of data experimentally measured. The proposed procedure, which has the great advantage of being robust and very fast, has been implemented in the powerful agent based software environment NetLogo, and is here presented and validated with reference to several benchmark cases of single and multi-cracked beams considering different load scenarios and boundary conditions. Sensitivity analyses to assess the influence of instrumental errors are also included in the study.

Closed-form solution based Genetic Algorithm Software: Application to multiple cracks detection on beam structures by static tests

A. Greco;A. Pluchino;CANNIZZARO, FRANCESCO;S. Caddemi;I. Caliò
2018-01-01

Abstract

In this paper a procedure for the static identification and reconstruction of concentrated damage distribution in beam-like structures, implemented in a dedicated software, is presented. The proposed damage identification strategy relies on the solution of an optimisation problem, by means of a genetic algorithm, which exploits the closed form solution based on the distribution theory of multi-cracked beams subjected to static loads. Precisely, the adoption of the closed-form solution allows a straightforward evolution of an initial random population of chromosomes, representing different damage distributions along the beam axis, towards the fittest and selected as the sought solution. This method allows the identification of the position and intensity of an arbitrary number of cracks and is limited only by the amount of data experimentally measured. The proposed procedure, which has the great advantage of being robust and very fast, has been implemented in the powerful agent based software environment NetLogo, and is here presented and validated with reference to several benchmark cases of single and multi-cracked beams considering different load scenarios and boundary conditions. Sensitivity analyses to assess the influence of instrumental errors are also included in the study.
2018
Static identification; Multiple cracks; Distributional theory; Genetic algorithms; Instrumental errors
File in questo prodotto:
File Dimensione Formato  
GrecoPluchinoCannizzaroCaddemiCaliò_ASC2018.pdf

solo gestori archivio

Descrizione: Articolo pubblicato
Tipologia: Versione Editoriale (PDF)
Dimensione 2.81 MB
Formato Adobe PDF
2.81 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/318379
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact