Quantum spin clusters provide a platform for the experimental study of many-body entanglement. Here we address a simple model of a single-molecule nanomagnet featuring N interacting spins in a transverse field. The field can control an entanglement transition (ET). We calculate the magnetization, low-energy gap, and neutron-scattering cross section and find that the ET has distinct signatures, detectable at temperatures as high as 5% of the interaction strength. The signatures are stronger for smaller clusters.
Control of entanglement transitions in quantum spin clusters
Amico, Luigi;
2017-01-01
Abstract
Quantum spin clusters provide a platform for the experimental study of many-body entanglement. Here we address a simple model of a single-molecule nanomagnet featuring N interacting spins in a transverse field. The field can control an entanglement transition (ET). We calculate the magnetization, low-energy gap, and neutron-scattering cross section and find that the ET has distinct signatures, detectable at temperatures as high as 5% of the interaction strength. The signatures are stronger for smaller clusters.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.96.224408.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Dimensione
5.15 MB
Formato
Adobe PDF
|
5.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.