We consider quasilinear elliptic equations that are degenerate in two ways. One kind of degeneracy is due to the particular structure of the given vector fields. Another is a consequence of the weights that we impose to the quadratic form of the associated differential operator. Nonetheless we prove that positive solutions satisfy unique continuation property.

Harnack inequality and smoothness for some non linear degenerate elliptic equations

Giuseppe Di Fazio
Membro del Collaboration Group
;
Pietro Zamboni
Membro del Collaboration Group
2017-01-01

Abstract

We consider quasilinear elliptic equations that are degenerate in two ways. One kind of degeneracy is due to the particular structure of the given vector fields. Another is a consequence of the weights that we impose to the quadratic form of the associated differential operator. Nonetheless we prove that positive solutions satisfy unique continuation property.
2017
Grushin operator; strong A-infinity weights; Stummel-Kato classes; unique continuation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/319892
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact