An efficient electrode for non-enzymatic glucose detection is produced with low-cost techniques on a Cu wire. ZnO nanorods (NRs) were grown on a Cu wire by chemical bath deposition and were used as the substrate for pulsed electrodeposition of nanostructured Ni(OH)2 flakes. The effect of the electrodeposition potential on the final morphology and electrochemical behavior of the Ni(OH)2/ZnO/Cu structures is reported. ZnO NRs resulted to be well dressed by Ni(OH)2 flakes and were tested as glucose sensing electrodes in 0.1 M NaOH solution, showing high sensitivities (up to 3 mA mM-1 cm-2) and long-term stability. The presence of ZnO NRs was shown to improve the performance of the glucose sensor in terms of electrochemical stability over the time and sensitivity compared to Ni(OH)2/Cu sample. The reported data demonstrate a simple, versatile and low-cost fabrication approach for effective glucose sensing system within a urban mines framework.

Low-cost and facile synthesis of Ni(OH)2/ZnO nanostructures for high-sensitivity glucose detection

Strano, V.
;
Mirabella, S.
2018-01-01

Abstract

An efficient electrode for non-enzymatic glucose detection is produced with low-cost techniques on a Cu wire. ZnO nanorods (NRs) were grown on a Cu wire by chemical bath deposition and were used as the substrate for pulsed electrodeposition of nanostructured Ni(OH)2 flakes. The effect of the electrodeposition potential on the final morphology and electrochemical behavior of the Ni(OH)2/ZnO/Cu structures is reported. ZnO NRs resulted to be well dressed by Ni(OH)2 flakes and were tested as glucose sensing electrodes in 0.1 M NaOH solution, showing high sensitivities (up to 3 mA mM-1 cm-2) and long-term stability. The presence of ZnO NRs was shown to improve the performance of the glucose sensor in terms of electrochemical stability over the time and sensitivity compared to Ni(OH)2/Cu sample. The reported data demonstrate a simple, versatile and low-cost fabrication approach for effective glucose sensing system within a urban mines framework.
Chemical synthesis, glucose sensing, Ni(OH)2, ZnO, Bioengineering, Chemistry (all), Materials Science (all), Mechanics of Materials, Mechanical Engineering, Electrical and Electronic Engineering.
File in questo prodotto:
File Dimensione Formato  
Strano_2018_Nanotechnology_29_015502.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Dimensione 2.27 MB
Formato Adobe PDF
2.27 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/320500
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact