A measurement of the top quark mass (M-t) in the dileptonic t (t) over bar decay channel is performed using data from proton-proton collisions at a center-of-mass energy of 8 TeV. The data was recorded by the CMS experiment at the LHC and corresponds to an integrated luminosity of 19.7 +/- 0.5 fb(-1). Events are selected with two oppositely charged leptons (l = e, mu) and two jets identified as originating from b quarks. The analysis is based on three kinematic observables whose distributions are sensitive to the value of Mt. An invariant mass observable, M-bl, and a "stransverse mass" observable, M-T2, are employed in a simultaneous fit to determine the value of M-t and an overall jet energy scale factor (JSF). A complementary approach is used to construct an invariant mass observable, M-blv, that is combined with M-T2 to measure M-t. The shapes of the observables, along with their evolutions in M-t and JSF, are modeled by a nonparametric Gaussian process regression technique. The sensitivity of the observables to the value of M-t is investigated using a Fisher information density method. The top quark mass is measured to be 172.22 +/- 0.18(stat)(-0.93)(+0.89) (syst) GeV.
Measurement of the top quark mass in the dileptonic t(t)over-bar decay channel using the mass observables M-bl, M-T2, and M-blv in pp collisions at root=8 TeV
Albergo, S.;Costa, S.;Di Mattia, A.;Giordano, F.;Potenza, R.;Tricomi, A.;Tuve, C.;
2017-01-01
Abstract
A measurement of the top quark mass (M-t) in the dileptonic t (t) over bar decay channel is performed using data from proton-proton collisions at a center-of-mass energy of 8 TeV. The data was recorded by the CMS experiment at the LHC and corresponds to an integrated luminosity of 19.7 +/- 0.5 fb(-1). Events are selected with two oppositely charged leptons (l = e, mu) and two jets identified as originating from b quarks. The analysis is based on three kinematic observables whose distributions are sensitive to the value of Mt. An invariant mass observable, M-bl, and a "stransverse mass" observable, M-T2, are employed in a simultaneous fit to determine the value of M-t and an overall jet energy scale factor (JSF). A complementary approach is used to construct an invariant mass observable, M-blv, that is combined with M-T2 to measure M-t. The shapes of the observables, along with their evolutions in M-t and JSF, are modeled by a nonparametric Gaussian process regression technique. The sensitivity of the observables to the value of M-t is investigated using a Fisher information density method. The top quark mass is measured to be 172.22 +/- 0.18(stat)(-0.93)(+0.89) (syst) GeV.File | Dimensione | Formato | |
---|---|---|---|
PhysRevD.96.032002.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.