In this paper we devise a neural-network-based model to improve the production workflow of organic solar cells (OSCs). The investigated neural model is used to reckon the relation between the OSC's generated power and several device's properties such as the geometrical parameters and the active layers thicknesses. Such measurements were collected during an experimental campaign conducted on 80 devices. The collected data suggest that the maximum generated power depends on the active layer thickness. The mathematical model of such a relation has been determined by using a feedforward neural network (FFNN) architecture as a universal function approximator. The performed simulations show good agreement between simulated and experimental data with an overall error of about 9%. The obtained results demonstrate that the use of a neural model can be useful to improve the OSC manufacturing processes

Theory and Applications of Fractional Order Systems 2016

Caponetto, Riccardo
;
2016-01-01

Abstract

In this paper we devise a neural-network-based model to improve the production workflow of organic solar cells (OSCs). The investigated neural model is used to reckon the relation between the OSC's generated power and several device's properties such as the geometrical parameters and the active layers thicknesses. Such measurements were collected during an experimental campaign conducted on 80 devices. The collected data suggest that the maximum generated power depends on the active layer thickness. The mathematical model of such a relation has been determined by using a feedforward neural network (FFNN) architecture as a universal function approximator. The performed simulations show good agreement between simulated and experimental data with an overall error of about 9%. The obtained results demonstrate that the use of a neural model can be useful to improve the OSC manufacturing processes
2016
Mathematics (all); Engineering (all)
File in questo prodotto:
File Dimensione Formato  
7903424.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/326670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact