We demonstrate the potential of an innovative technique, pulsed radiofrequency glow discharge time-of-flight mass spectrometry, for the molecular depth profiling of polymer materials. The technique benefits from the presence, in the afterglow of the pulsed glow discharge, of fragment ions that can be related to the structures of the polymers under study. Thin films of different polymers (PMMA, PET, PAMS, PS) were successfully profiled with retention of molecular information along the profile. Multilayered structures of the above polymers were also profiled, and it was possible to discriminate among layers having similar elemental composition but different polymer structure. Copyright (C) 2009 John Wiley & Sons, Ltd.

Pulsed radiofrequency glow discharge time-of-flight mass spectrometry for molecular depth profiling of polymer-based films

TUCCITTO, NUNZIO;LICCIARDELLO, Antonino
2009-01-01

Abstract

We demonstrate the potential of an innovative technique, pulsed radiofrequency glow discharge time-of-flight mass spectrometry, for the molecular depth profiling of polymer materials. The technique benefits from the presence, in the afterglow of the pulsed glow discharge, of fragment ions that can be related to the structures of the polymers under study. Thin films of different polymers (PMMA, PET, PAMS, PS) were successfully profiled with retention of molecular information along the profile. Multilayered structures of the above polymers were also profiled, and it was possible to discriminate among layers having similar elemental composition but different polymer structure. Copyright (C) 2009 John Wiley & Sons, Ltd.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/32702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 33
social impact