The new detector CHIMERA, in its final 4pi configuration, has been installed at Laboratori Nazionali del Sud (LNS) in Catania in January 2003. Beams of different energies ranging from protons to An ions were delivered by the, Tandem and the Super Conducting Cyclotron for nuclear reaction studies, in agreement with the approval of the Scientific Advisory Committee of LNS. Recent experimental results confirm very low energy thresholds of the trigger (below 0.5 MeV/nucleon), ensured within a wide dynamical range. Good characteristics of identification of light charged particles and heavy fragments have been obtained by using three detection techniques: DeltaE-E, DeltaE-time of flight, and the Pulse-Shape discrimination method. We present results of recent analysis concerning the production of intermediate mass fragments (IMF) in semi-peripheral collisions. Our results combined with theoretical Boltzmann-Nordheim-Vlasov simulations clearly demonstrate the presence of very fast processes of IMF production in the overlapping region of the target and projectile nuclei during re-separation, i.e. in the time scale comparable with the collision time. Evidence for slower, sequential-like production of IMF's is also shown.

The new detector CHIMERA, in its final 4π configuration, has been installed at Laboratori Nazionali del Sud (LNS) in Catania in January 2003. Beams of different energies ranging from protons to Au ions were delivered by the Tandem and the Super Conducting Cyclotron for nuclear reaction studies, in agreement with the approval of the Scientific Advisory Committee of LNS. Recent experimental results confirm very low energy thresholds of the trigger (below 0.5 MeV/nucleon), ensured within a wide dynamical range. Good characteristics of identification of light charged particles and heavy fragments have been obtained by using three detection techniques: AE-E, A&time of flight, and the Pulse- Shape discrimination method. We present results of recent analysis concerning the production of intermediate mass fragments (IMF) in semi-peripheral collisions. Our results combined with theoretical Boltzmann-Nordheim-Vlasov simulations clearly demonstrate the presence of very fast processes of IMF production in the overlapping region of the target and projectile nuclei during re-separation, i.e. in the time scale comparable with the collision time. Evidence for slower, sequential-like production of IMF’s is also shown.

Fragmentation studies with the CHIMERA detector at LNS in Catania: recent progress

PAGANO, ANGELO;GERACI, Elena Irene;POLITI, Giuseppe;RIZZO, Francesca;
2004-01-01

Abstract

The new detector CHIMERA, in its final 4π configuration, has been installed at Laboratori Nazionali del Sud (LNS) in Catania in January 2003. Beams of different energies ranging from protons to Au ions were delivered by the Tandem and the Super Conducting Cyclotron for nuclear reaction studies, in agreement with the approval of the Scientific Advisory Committee of LNS. Recent experimental results confirm very low energy thresholds of the trigger (below 0.5 MeV/nucleon), ensured within a wide dynamical range. Good characteristics of identification of light charged particles and heavy fragments have been obtained by using three detection techniques: AE-E, A&time of flight, and the Pulse- Shape discrimination method. We present results of recent analysis concerning the production of intermediate mass fragments (IMF) in semi-peripheral collisions. Our results combined with theoretical Boltzmann-Nordheim-Vlasov simulations clearly demonstrate the presence of very fast processes of IMF production in the overlapping region of the target and projectile nuclei during re-separation, i.e. in the time scale comparable with the collision time. Evidence for slower, sequential-like production of IMF’s is also shown.
2004
The new detector CHIMERA, in its final 4pi configuration, has been installed at Laboratori Nazionali del Sud (LNS) in Catania in January 2003. Beams of different energies ranging from protons to An ions were delivered by the, Tandem and the Super Conducting Cyclotron for nuclear reaction studies, in agreement with the approval of the Scientific Advisory Committee of LNS. Recent experimental results confirm very low energy thresholds of the trigger (below 0.5 MeV/nucleon), ensured within a wide dynamical range. Good characteristics of identification of light charged particles and heavy fragments have been obtained by using three detection techniques: DeltaE-E, DeltaE-time of flight, and the Pulse-Shape discrimination method. We present results of recent analysis concerning the production of intermediate mass fragments (IMF) in semi-peripheral collisions. Our results combined with theoretical Boltzmann-Nordheim-Vlasov simulations clearly demonstrate the presence of very fast processes of IMF production in the overlapping region of the target and projectile nuclei during re-separation, i.e. in the time scale comparable with the collision time. Evidence for slower, sequential-like production of IMF's is also shown.
APPARATO DI RIVELAZIONE; TECNICHE DI IDENTIFICAZIONE; REAZIONI NUCLEARI SEMI-PERIFERICHE; PRODUZIONE DI FRAMMENTI DI MASSA INTERMEDIA; TEMPI DI PRODUZIONE DEI FRAMMENTI
File in questo prodotto:
File Dimensione Formato  
pagano_npa_2004.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/32960
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 181
  • ???jsp.display-item.citation.isi??? 181
social impact