Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
14 MeV calibration of JET neutron detectors-phase 1: Calibration and characterization of the neutron source
Batistoni, P.;Popovichev, S.;Cufar, A.;Ghani, Z.;Giacomelli, L.;Jednorog, S.;Klix, A.;Lilley, S.;Laszynska, E.;Loreti, S.;Packer, L.;Peacock, A.;Pillon, M.;Price, R.;Rebai, M.;Rigamonti, D.;Roberts, N.;Tardocchi, M.;Thomas, D.;Zychor, I.;Litaudon, X.;Abduallev, S.;Abhangi, M.;Abreu, P.;Afzal, M.;Aggarwal, K. M.;Ahlgren, T.;Ahn, J. H.;Aho-Mantila, L.;Aiba, N.;Airila, M.;Albanese, R.;Aldred, V.;Alegre, D.;Alessi, E.;Aleynikov, P.;Alfier, A.;Alkseev, A.;Allinson, M.;Alper, B.;Alves, E.;Ambrosino, G.;Ambrosino, R.;Amicucci, L.;Amosov, V.;Andersson Sundén, E.;Angelone, M.;Anghel, M.;Angioni, C.;Appel, L.;Appelbee, C.;Arena, P.;Ariola, M.;Arnichand, H.;Arshad, S.;Ash, A.;Ashikawa, N.;Aslanyan, V.;Asunta, O.;Auriemma, F.;Austin, Y.;Avotina, L.;Axton, M. D.;Ayres, C.;Bacharis, M.;Baciero, A.;Baião, D.;Bailey, S.;Baker, A.;Balboa, I.;Balden, M.;Balshaw, N.;Bament, R.;Banks, J. W.;Baranov, Y. F.;Barnard, M. A.;Barnes, D.;Barnes, M.;Barnsley, R.;Baron Wiechec, A.;Barrera Orte, L.;Baruzzo, M.;Basiuk, V.;Bassan, M.;Bastow, R.;Batista, A.;Baughan, R.;Bauvir, B.;Baylor, L.;Bazylev, B.;Beal, J.;Beaumont, P. S.;Beckers, M.;Beckett, B.;Becoulet, A.;Bekris, N.;Beldishevski, M.;Bell, K.;Belli, F.;Bellinger, M.;Belonohy, É.;Ben Ayed, N.;Benterman, N. A.;Bergsåker, H.;Bernardo, J.;Bernert, M.;Berry, M.;Bertalot, L.;Besliu, C.;Beurskens, M.;Bieg, B.;Bielecki, J.;Biewer, T.;Bigi, M.;Bílková, P.;Binda, F.;Bisoffi, A.;Bizarro, J. P. S.;Björkas, C.;Blackburn, J.;Blackman, K.;Blackman, T. R.;Blanchard, P.;Blatchford, P.;Bobkov, V.;Boboc, A.;Bodnár, G.;Bogar, O.;Bolshakova, I.;Bolzonella, T.;Bonanomi, N.;Bonelli, F.;Boom, J.;Booth, J.;Borba, D.;Borodin, D.;Borodkina, I.;Botrugno, A.;Bottereau, C.;Boulting, P.;Bourdelle, C.;Bowden, M.;Bower, C.;Bowman, C.;Boyce, T.;Boyd, C.;Boyer, H. J.;Bradshaw, J. M. A.;Braic, V.;Bravanec, R.;Breizman, B.;Bremond, S.;Brennan, P. D.;Breton, S.;Brett, A.;Brezinsek, S.;Bright, M. D. J.;Brix, M.;Broeckx, W.;Brombin, M.;Broslawski, A.;Brown, D. P. D.;Brown, M.;Bruno, E.;Bucalossi, J.;Buch, J.;Buchanan, J.;Buckley, M. A.;Budny, R.;Bufferand, H.;Bulman, M.;Bulmer, N.;Bunting, P.;Buratti, P.;Burckhart, A.;Buscarino, A.;Busse, A.;Butler, N. K.;Bykov, I.;Byrne, J.;Cahyna, P.;Calabrò, G.;Calvo, I.;Camenen, Y.;Camp, P.;Campling, D. C.;Cane, J.;Cannas, B.;Capel, A. J.;Card, P. J.;Cardinali, A.;Carman, P.;Carr, M.;Carralero, D.;Carraro, L.;Carvalho, B. B.;Carvalho, I.;Carvalho, P.;Casson, F. J.;Castaldo, C.;Catarino, N.;Caumont, J.;Causa, F.;Cavazzana, R.;Cave-Ayland, K.;Cavinato, M.;Cecconello, M.;Ceccuzzi, S.;Cecil, E.;Cenedese, A.;Cesario, R.;Challis, C. D.;Chandler, M.;Chandra, D.;Chang, C. S.;Chankin, A.;Chapman, I. T.;Chapman, S. C.;Chernyshova, M.;Chitarin, G.;Ciraolo, G.;Ciric, D.;Citrin, J.;Clairet, F.;Clark, E.;Clark, M.;Clarkson, R.;Clatworthy, D.;Clements, C.;Cleverly, M.;Coad, J. P.;Coates, P. A.;Cobalt, A.;Coccorese, V.;Cocilovo, V.;Coda, S.;Coelho, R.;Coenen, J. W.;Coffey, I.;Colas, L.;Collins, S.;Conka, D.;Conroy, S.;Zilli, E.;Zoita, V.;Zoletnik, S.;Conway, N.;Coombs, D.;Cooper, D.;Cooper, S. R.;Corradino, C.;Corre, Y.;Corrigan, G.;Cortes, S.;Coster, D.;Couchman, A. S.;Cox, M. P.;Craciunescu, T.;Cramp, S.;Craven, R.;Crisanti, F.;Croci, G.;Croft, D.;Crombé, K.;Crowe, R.;Cruz, N.;Cseh, G.;Cufar, A.;Cullen, A.;Curuia, M.;Czarnecka, A.;Dabirikhah, H.;Dalgliesh, P.;Dalley, S.;Dankowski, J.;Darrow, D.;Davies, O.;Davis, W.;Day, C.;Day, I. E.;De Bock, M.;de Castro, A.;de la Cal, E.;de la Luna, E.;De Masi, G.;de Pablos, J. L.;De Temmerman, G.;De Tommasi, G.;de Vries, P.;Deakin, K.;Deane, J.;Degli Agostini, F.;Dejarnac, R.;Delabie, E.;den Harder, N.;Dendy, R. O.;Denis, J.;Denner, P.;Devaux, S.;Devynck, P.;Di Maio, F.;Di Siena, A.;Di Troia, C.;Dinca, P.;D’Inca, R.;Ding, B.;Dittmar, T.;Doerk, H.;Doerner, R. P.;Donné, T.;Dorling, S. E.;Dormido-Canto, S.;Doswon, S.;Douai, D.;Doyle, P. T.;Drenik, A.;Drewelow, P.;Drews, P.;Duckworth, Ph.;Dumont, R.;Dumortier, P.;Dunai, D.;Dunne, M.;Duran, I.;Durodié, F.;Dutta, P.;Duval, B. P.;Dux, R.;Dylst, K.;Dzysiuk, N.;Edappala, P. V.;Edmond, J.;Edwards, A. M.;Edwards, J.;Eich, Th.;Ekedahl, A.;El-Jorf, R.;Elsmore, C. G.;Enachescu, M.;Ericsson, G.;Eriksson, F.;Eriksson, J.;Eriksson, L. G.;Esposito, B.;Esquembri, S.;Esser, H. G.;Esteve, D.;Evans, B.;Evans, G. E.;Evison, G.;Ewart, G. D.;Fagan, D.;Faitsch, M.;Falie, D.;Fanni, A.;Fasoli, A.;Faustin, J. M.;Fawlk, N.;Fazendeiro, L.;Fedorczak, N.;Felton, R. C.;Fenton, K.;Fernades, A.;Fernandes, H.;Ferreira, J.;Fessey, J. A.;Février, O.;Ficker, O.;Field, A.;Fietz, S.;Figueiredo, A.;Figueiredo, J.;Fil, A.;Finburg, P.;Firdaouss, M.;Fischer, U.;Fittill, L.;Fitzgerald, M.;Flammini, D.;Flanagan, J.;Fleming, C.;Flinders, K.;Fonnesu, N.;Fontdecaba, J. M.;Formisano, A.;Forsythe, L.;Fortuna, L.;Fortuna-Zalesna, E.;Fortune, M.;Foster, S.;Franke, T.;Franklin, T.;Frasca, M.;Frassinetti, L.;Freisinger, M.;Fresa, R.;Frigione, D.;Fuchs, V.;Fuller, D.;Futatani, S.;Fyvie, J.;Gál, K.;Galassi, D.;Galazka, K.;Galdon-Quiroga, J.;Gallagher, J.;Gallart, D.;Galvão, R.;Gao, X.;Gao, Y.;Garcia, J.;Garcia-Carrasco, A.;García-Muñoz, M.;Gardarein, J. -L.;Garzotti, L.;Gaudio, P.;Gauthier, E.;Gear, D. F.;Gee, S. J.;Geiger, B.;Gelfusa, M.;Gerasimov, S.;Gervasini, G.;Gethins, M.;Ghate, M.;Gherendi, M.;Giacalone, J. C.;Gibson, C. S.;Giegerich, T.;Gil, C.;Gil, L.;Gilligan, S.;Gin, D.;Giovannozzi, E.;Girardo, J. B.;Giroud, C.;Giruzzi, G.;Glöggler, S.;Godwin, J.;Goff, J.;Gohil, P.;Goloborod’ko, V.;Gomes, R.;Gonçalves, B.;Goniche, M.;Goodliffe, M.;Goodyear, A.;Gorini, G.;Gosk, M.;Goulding, R.;Goussarov, A.;Gowland, R.;Graham, B.;Graham, M. E.;Graves, J. P.;Grazier, N.;Grazier, P.;Green, N. R.;Greuner, H.;Grierson, B.;Griph, F. S.;Grisolia, C.;Grist, D.;Groth, M.;Grove, R.;Grundy, C. N.;Grzonka, J.;Guard, D.;Guérard, C.;Guillemaut, C.;Guirlet, R.;Gurl, C.;Utoh, H. H.;Hackett, L. J.;Hacquin, S.;Hagar, A.;Hager, R.;Hakola, A.;Halitovs, M.;Hall, S. J.;Hallworth Cook, S. P.;Hamlyn-Harris, C.;Hammond, K.;Harrington, C.;Harrison, J.;Harting, D.;Hasenbeck, F.;Hatano, Y.;Hatch, D. R.;Haupt, T. D. V.;Hawes, J.;Hawkes, N. C.;Hawkins, J.;Hawkins, P.;Haydon, P. W.;Hayter, N.;Hazel, S.;Heesterman, P. J. L.;Heinola, K.;Hellesen, C.;Hellsten, T.;Helou, W.;Hemming, O. N.;Hender, T. C.;Henderson, M.;Henderson, S. S.;Henriques, R.;Hepple, D.;Hermon, G.;Hertout, P.;Hidalgo, C.;Highcock, E. G.;Hill, M.;Hillairet, J.;Hillesheim, J.;Hillis, D.;Hizanidis, K.;Hjalmarsson, A.;Hobirk, J.;Hodille, E.;Hogben, C. H. A.;Hogeweij, G. M. D.;Hollingsworth, A.;Hollis, S.;Homfray, D. A.;Horácek, J.;Hornung, G.;Horton, A. R.;Horton, L. D.;Horvath, L.;Hotchin, S. P.;Hough, M. R.;Howarth, P. J.;Hubbard, A.;Huber, A.;Huber, V.;Huddleston, T. M.;Hughes, M.;Huijsmans, G. T. A.;Hunter, C. L.;Huynh, P.;Hynes, A. M.;Iglesias, D.;Imazawa, N.;Imbeaux, F.;Imríšek, M.;Incelli, M.;Innocente, P.;Irishkin, M.;Ivanova-Stanik, I.;Jachmich, S.;Jacobsen, A. S.;Jacquet, P.;Jansons, J.;Jardin, A.;Järvinen, A.;Jaulmes, F.;Jednoróg, S.;Jenkins, I.;Jeong, C.;Jepu, I.;Joffrin, E.;Johnson, R.;Johnson, T.;Johnston, Jane;Joita, L.;Jones, G.;Jones, T. T. C.;Hoshino, K. K.;Kallenbach, A.;Kamiya, K.;Kaniewski, J.;Kantor, A.;Kappatou, A.;Karhunen, J.;Karkinsky, D.;Karnowska, I.;Kaufman, M.;Kaveney, G.;Kazakov, Y.;Kazantzidis, V.;Keeling, D. L.;Keenan, T.;Keep, J.;Kempenaars, M.;Kennedy, C.;Kenny, D.;Kent, J.;Kent, O. N.;Khilkevich, E.;Kim, H. T.;Kim, H. S.;Kinch, A.;king, C.;King, D.;King, R. F.;Kinna, D. J.;Kiptily, V.;Kirk, A.;Kirov, K.;Kirschner, A.;Kizane, G.;Klepper, C.;Knight, P.;Knipe, S. J.;Knott, S.;Kobuchi, T.;Köchl, F.;Kocsis, G.;Kodeli, I.;Kogan, L.;Kogut, D.;Koivuranta, S.;Kominis, Y.;Köppen, M.;Kos, B.;Koskela, T.;Koslowski, H. R.;Koubiti, M.;Kovari, M.;Kowalska-Strzeciwilk, E.;Krasilnikov, A.;Krasilnikov, V.;Krawczyk, N.;Kresina, M.;Krieger, K.;Krivska, A.;Kruezi, U.;Ksiazek, I.;Kukushkin, A.;Kundu, A.;Kurki-Suonio, T.;Kwak, S.;Kwiatkowski, R.;Kwon, O. J.;Laguardia, L.;Lahtinen, A.;Laing, A.;Lam, N.;Lambertz, H. T.;Lane, C.;Lang, P. T.;Lanthaler, S.;Lapins, J.;Lasa, A.;Last, J. R.;Lawless, R.;Lawson, A.;Lawson, K. D.;Lazaros, A.;Lazzaro, E.;Leddy, J.;Lee, S.;Lefebvre, X.;Leggate, H. J.;Lehmann, J.;Lehnen, M.;Leichtle, D.;Leichuer, P.;Leipold, F.;Lengar, I.;Lennholm, M.;Lerche, E.;Lescinskis, A.;Lesnoj, S.;Letellier, E.;Leyland, M.;Leysen, W.;Li, L.;Liang, Y.;Likonen, J.;Linke, J.;Linsmeier, Ch.;Lipschultz, B.;Liu, G.;Liu, Y.;Lo Schiavo, V. P.;Loarer, T.;Loarte, A.;Lobel, R. C.;Lomanowski, B.;Lomas, P. J.;Lönnroth, J.;M. López, J.;López-Razola, J.;Lorenzini, R.;Losada, U.;Lovell, J. J.;Loving, A. B.;Lowry, C.;Luce, T.;Lucock, R. M. A.;Lukin, A.;Luna, C.;Lungaroni, M.;Lungu, C. P.;Lungu, M.;Lunniss, A.;Lupelli, I.;Lyssoivan, A.;Macdonald, N.;Macheta, P.;Maczewa, K.;Magesh, B.;Maget, P.;Maggi, C.;Maier, H.;Mailloux, J.;Makkonen, T.;Makwana, R.;Malaquias, A.;Malizia, A.;Manas, P.;Manning, A.;Manso, M. E.;Mantica, P.;Mantsinen, M.;Manzanares, A.;Maquet, Ph.;Marandet, Y.;Marcenko, N.;Marchetto, C.;Marchuk, O.;Marinelli, M.;Marinucci, M.;Markovic, T.;Marocco, D.;Marot, L.;Marren, C. A.;Marshal, R.;Martin, A.;Martin, Y.;Martín de Aguilera, A.;Martínez, F. J.;Martín-Solís, J. R.;Martynova, Y.;Maruyama, S.;Masiello, A.;Maslov, M.;Matejcik, S.;Mattei, M.;Matthews, G. F.;Maviglia, F.;Mayer, M.;Mayoral, M. L.;May-Smith, T.;Mazon, D.;Mazzotta, C.;McAdams, R.;McCarthy, P. J.;McClements, K. G.;McCormack, O.;McCullen, P. A.;McDonald, D.;McIntosh, S.;McKean, R.;McKehon, J.;Meadows, R. C.;Meakins, A.;Medina, F.;Medland, M.;Medley, S.;Meigh, S.;Meigs, A. G.;Meisl, G.;Meitner, S.;Meneses, L.;Menmuir, S.;Mergia, K.;Merrigan, I. R.;Mertens, Ph.;Meshchaninov, S.;Messiaen, A.;Meyer, H.;Mianowski, S.;Michling, R.;Middleton-Gear, D.;Miettunen, J.;Militello, F.;Militello-Asp, E.;Miloshevsky, G.;Mink, F.;Minucci, S.;Miyoshi, Y.;Mlynár, J.;Molina, D.;Monakhov, I.;Moneti, M.;Mooney, R.;Moradi, S.;Mordijck, S.;Moreira, L.;Moreno, R.;Moro, F.;Morris, A. W.;Morris, J.;Moser, L.;Mosher, S.;Moulton, D.;Murari, A.;Muraro, A.;Murphy, S.;Asakura, N. N.;Na, Y. S.;Nabais, F.;Naish, R.;Nakano, T.;Nardon, E.;Naulin, V.;Nave, M. F. F.;Nedzelski, I.;Nemtsev, G.;Nespoli, F.;Neto, A.;Neu, R.;Neverov, V. S.;Newman, M.;Nicholls, K. J.;Nicolas, T.;Nielsen, A. H.;Nielsen, P.;Nilsson, E.;Nishijima, D.;Noble, C.;Nocente, M.;Nodwell, D.;Nordlund, K.;Nordman, H.;Nouailletas, R.;Nunes, I.;Oberkofler, M.;Odupitan, T.;Ogawa, M. T.;O’Gorman, T.;Okabayashi, M.;Olney, R.;Omolayo, O.;O’Mullane, M.;Ongena, J.;Orsitto, F.;Orszagh, J.;Oswuigwe, B. I.;Otin, R.;Owen, A.;Paccagnella, R.;Pace, N.;Pacella, D.;Packer, L. W.;Page, A.;Pajuste, E.;Palazzo, S.;Pamela, S.;Panja, S.;Papp, P.;Paprok, R.;Parail, V.;Park, M.;Parra Diaz, F.;Parsons, M.;Pasqualotto, R.;Patel, A.;Pathak, S.;Paton, D.;Patten, H.;Pau, A.;Pawelec, E.;Paz Soldan, C.;Peackoc, A.;Pearson, I. J.;Pehkonen, S. -P.;Peluso, E.;Penot, C.;Pereira, A.;Pereira, R.;Pereira Puglia, P. P.;Perez von Thun, C.;Peruzzo, S.;Peschanyi, S.;Peterka, M.;Petersson, P.;Petravich, G.;Petre, A.;Petrella, N.;Petržilka, V.;Peysson, Y.;Pfefferlé, D.;Philipps, V.;Pintsuk, G.;Piovesan, P.;Pires dos Reis, A.;Piron, L.;Pironti, A.;Pisano, F.;Pitts, R.;Pizzo, F.;Plyusnin, V.;Pomaro, N.;Pompilian, O. G.;Pool, P. J.;Porfiri, M. T.;Porosnicu, C.;Porton, M.;Possnert, G.;Potzel, S.;Powell, T.;Pozzi, J.;Prajapati, V.;Prakash, R.;Prestopino, G.;Price, D.;Price, M.;Prior, P.;Proudfoot, R.;Pucella, G.;Puglia, P.;Puiatti, M. E.;Pulley, D.;Purahoo, K.;Pütterich, Th.;Rachlew, E.;Rack, M.;Ragona, R.;Rainford, M. S. J.;Rakha, A.;Ramogida, G.;Ranjan, S.;Rapson, C. J.;Rasmussen, J. J.;Rathod, K.;Rattá, G.;Ratynskaia, S.;Ravera, G.;Rayner, C.;Reece, D.;Reed, A.;Réfy, D.;Regan, B.;Regaña, J.;Reich, M.;Reid, N.;Reimold, F.;Reinhart, M.;Reinke, M.;Reiser, D.;Rendell, D.;Reux, C.;Reyes Cortes, S. D. A.;Reynolds, S.;Riccardo, V.;Richardson, N.;Riddle, K.;Rimini, F. G.;Risner, J.;Riva, M.;Roach, C.;Robins, R. J.;Robinson, S. A.;Robinson, T.;Robson, D. W.;Roccella, R.;Rodionov, R.;Rodrigues, P.;Rodriguez, J.;Rohde, V.;Romanelli, F.;Romanelli, M.;Romanelli, S.;Romazanov, J.;Rowe, S.;Rubel, M.;Rubinacci, G.;Rubino, G.;Ruchko, L.;Ruiz, M.;Ruset, C.;Rzadkiewicz, J.;Saarelma, S.;Sabot, R.;Safi, E.;Sagar, P.;Saibene, G.;Saint-Laurent, F.;Salewski, M.;Salmi, A.;Salmon, R.;Salzedas, F.;Samaddar, D.;Samm, U.;Sandiford, D.;Santa, P.;Santala, M. I. K.;Santos, B.;Santucci, A.;Sartori, F.;Sartori, R.;Sauter, O.;Scannell, R.;Schlummer, T.;Schmid, K.;Schmidt, V.;Schmuck, S.;Schneider, M.;Schöpf, K.;Schwörer, D.;Scott, S. D.;Sergienko, G.;Sertoli, M.;Shabbir, A.;Sharapov, S. E.;Shaw, A.;Shaw, R.;Sheikh, H.;Shepherd, A.;Shevelev, A.;Shumack, A.;Sias, G.;Sibbald, M.;Sieglin, B.;Silburn, S.;Silva, A.;Silva, C.;Simmons, P. A.;Simpson, J.;Simpson-Hutchinson, J.;Sinha, A.;Sipilä, S. K.;Sips, A. C. C.;Sirén, P.;Sirinelli, A.;Sjöstrand, H.;Skiba, M.;Skilton, R.;Slabkowska, K.;Slade, B.;Smith, N.;Smith, P. G.;Smith, R.;Smith, T. J.;Smithies, M.;Snoj, L.;Soare, S.;Solano, E. R.;Somers, A.;Sommariva, C.;Sonato, P.;Sopplesa, A.;Sousa, J.;Sozzi, C.;Spagnolo, S.;Spelzini, T.;Spineanu, F.;Stables, G.;Stamatelatos, I.;Stamp, M. F.;Staniec, P.;Stankunas, G.;Stan-Sion, C.;Stead, M. J.;Stefanikova, E.;Stepanov, I.;Stephen, A. V.;Stephen, M.;Stevens, A.;Stevens, B. D.;Strachan, J.;Strand, P.;Strauss, H. R.;Ström, P.;Stubbs, G.;Studholme, W.;Subba, F.;Summers, H. P.;Svensson, J.;Swiderski, L.;Szabolics, T.;Szawlowski, M.;Szepesi, G.;Suzuki, T. T.;Tál, B.;Tala, T.;Talbot, A. R.;Talebzadeh, S.;Taliercio, C.;Tamain, P.;Tame, C.;Tang, W.;Taroni, L.;Taylor, D.;Taylor, K. A.;Tegnered, D.;Telesca, G.;Teplova, N.;Terranova, D.;Testa, D.;Tholerus, E.;Thomas, J.;Thomas, J. D.;Thomas, P.;Thompson, A.;Thompson, C. -A.;Thompson, V. K.;Thorne, L.;Thornton, A.;Thrysøe, A. S.;Tigwell, P. A.;Tipton, N.;Tiseanu, I.;Tojo, H.;Tokitani, M.;Tolias, P.;Tomeš, M.;Tonner, P.;Towndrow, M.;Trimble, P.;Tripsky, M.;Tsalas, M.;Tsavalas, P.;Tskhakaya jun, D.;Turner, I.;Turner, M. M.;Turnyanskiy, M.;Tvalashvili, G.;Tyrrell, S. G. J.;Uccello, A.;Ul-Abidin, Z.;Uljanovs, J.;Ulyatt, D.;Urano, H.;Uytdenhouwen, I.;Vadgama, A. P.;Valcarcel, D.;Valentinuzzi, M.;Valisa, M.;Vallejos Olivares, P.;Valovic, M.;Van De Mortel, M.;Van Eester, D.;Van Renterghem, W.;van Rooij, G. J.;Varje, J.;Varoutis, S.;Vartanian, S.;Vasava, K.;Vasilopoulou, T.;Vega, J.;Verdoolaege, G.;Verhoeven, R.;Verona, C.;Verona Rinati, G.;Veshchev, E.;Vianello, N.;Vicente, J.;Viezzer, E.;Villari, S.;Villone, F.;Vincenzi, P.;Vinyar, I.;Viola, B.;Vitins, A.;Vizvary, Z.;Vlad, M.;Voitsekhovitch, I.;Vondrácek, P.;Vora, N.;Vu, T.;Pires de Sa, W. W.;Wakeling, B.;Waldon, C. W. F.;Walkden, N.;Walker, M.;Walker, R.;Walsh, M.;Wang, E.;Wang, N.;Warder, S.;Warren, R. J.;Waterhouse, J.;Watkins, N. W.;Watts, C.;Wauters, T.;Weckmann, A.;Weiland, J.;Weisen, H.;Weiszflog, M.;Wellstood, C.;West, A. T.;Wheatley, M. R.;Whetham, S.;Whitehead, A. M.;Whitehead, B. D.;Widdowson, A. M.;Wiesen, S.;Wilkinson, J.;Williams, J.;Williams, M.;Wilson, A. R.;Wilson, D. J.;Wilson, H. R.;Wilson, J.;Wischmeier, M.;Withenshaw, G.;Withycombe, A.;Witts, D. M.;Wood, D.;Wood, R.;Woodley, C.;Wray, S.;Wright, J.;Wright, J. C.;Wu, J.;Wukitch, S.;Wynn, A.;Xu, T.;Yadikin, D.;Yanling, W.;Yao, L.;Yavorskij, V.;Yoo, M. G.;Young, C.;Young, D.;Young, I. D.;Young, R.;Zacks, J.;Zagorski, R.;Zaitsev, F. S.;Zanino, R.;Zarins, A.;Zastrow, K. D.;Zerbini, M.;Zhang, W.;Zhou, Y.
2018-01-01
Abstract
In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is 10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e.The neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within ± 5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in-vessel calibration and to derive the response of the JET neutron detectors to DT plasma neutrons starting from the response to the generator neutrons, and taking into account all the calibration circumstances.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/334763
Citazioni
ND
29
24
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.