In sight of the luminosity increase of the High Luminosity-LHC (HL-LHC), most experiments at the CERN Large Hadron Collider (LHC) are planning upgrades for their innermost layers in the next 5–10 years. These upgrades will require more radiation tolerant technologies than exist today. Usage of Chemical Vapor Deposition (CVD) diamond as detector material is one of the potentially interesting technologies for the upgrade. CVD diamond has been used extensively in the beam condition monitors of BaBar, Belle, CDF and all LHC experiments. Measurements of the radiation tolerance of the highest quality polycrystalline CVD material for a range of proton energies, pions and neutrons obtained with this material are presented. In addition, new results on the evolution of various semiconductor parameters as a function of the dose rate are described.

Results on radiation tolerance of diamond detectors

Bellini, V.;Potenza, R.;Tuve, C.;
2019-01-01

Abstract

In sight of the luminosity increase of the High Luminosity-LHC (HL-LHC), most experiments at the CERN Large Hadron Collider (LHC) are planning upgrades for their innermost layers in the next 5–10 years. These upgrades will require more radiation tolerant technologies than exist today. Usage of Chemical Vapor Deposition (CVD) diamond as detector material is one of the potentially interesting technologies for the upgrade. CVD diamond has been used extensively in the beam condition monitors of BaBar, Belle, CDF and all LHC experiments. Measurements of the radiation tolerance of the highest quality polycrystalline CVD material for a range of proton energies, pions and neutrons obtained with this material are presented. In addition, new results on the evolution of various semiconductor parameters as a function of the dose rate are described.
2019
Diamond detectors; Radiation hard detectors; Solid state detectors; Nuclear and High Energy Physics; Instrumentation
File in questo prodotto:
File Dimensione Formato  
Results on radiation tolerance of diamond detectors.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Dimensione 423.34 kB
Formato Adobe PDF
423.34 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/335932
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact