AIMS: The present work evaluated the anti-inflammatory/antioxidant activity of a well characterized extract from Citrus bergamia Risso and Poiteau (CBE), containing neoeriocitrin, naringin, neohesperidin and other flavonoids, on human NCTC 2544 keratinocytes treated with interferon-gamma (IFN-γ) and histamine (H). MAIN METHODS: High performance liquid chromatography (HPLC) coupled with diode array detectors was used to characterize and quantify phenolic compounds in CBE. Anti-inflammatory/antioxidant ability on keratinocytes was determined through evaluation of inter-cellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) expression by Western blot, production of nitric oxide (NO) with Griess reagent and concentration of reactive oxygen species (ROS) by fluorescent quantitative analysis with 2',7'-dichlorfluorescein-diacetate (DCFH-DA). Cell viability was assessed using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Antioxidant activity was also measured by oxygen radical absorbance capacity (ORAC) assay. Glycosaminoglycans (GAGs) were quantified using 1.9-dimethyl methylene blue (DMB). KEY FINDINGS: CBE exhibited high antioxidant activity confirmed by elevated ORAC values related to high capacity in oxygen radical scavenging. The assays on keratinocytes demonstrated that CBE does not inhibit cell proliferation and is shown to significantly reduce dose-dependently ICAM-1, iNOS, NO, ROS and GAG production in cells exposed to IFN-γ and H. SIGNIFICANCE: Our study demonstrates that the pools of compounds of an extract from C. bergamia efficiently block the proinflammatory actions induced by IFN-γ and H on human keratinocytes. CBE may be used for topic employment in some inflammatory diseases of the skin and to represent an important opportunity for the essential oil processing industries.

Aims The present work evaluated the anti‐inflammatory/antioxidant activity of a well characterized extract from Citrus bergamia Risso and Poiteau (CBE), containing neoeriocitrin, naringin, neohesperidin and other flavonoids, on human NCTC 2544 keratinocytes treated with interferon-gamma (IFN-γ) and histamine (H). Main methods High performance liquid chromatography (HPLC) coupled with diode array detectors was used to characterize and quantify phenolic compounds in CBE. Anti‐inflammatory/antioxidant ability on keratinocytes was determined through evaluation of inter-cellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) expression by Western blot, production of nitric oxide (NO) with Griess reagent and concentration of reactive oxygen species (ROS) by fluorescent quantitative analysis with 2′,7′-dichlorfluorescein-diacetate (DCFH-DA). Cell viability was assessed using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Antioxidant activity was also measured by oxygen radical absorbance capacity (ORAC) assay. Glycosaminoglycans (GAGs) were quantified using 1.9-dimethyl methylene blue (DMB). Key findings CBE exhibited high antioxidant activity confirmed by elevated ORAC values related to high capacity in oxygen radical scavenging. The assays on keratinocytes demonstrated that CBE does not inhibit cell proliferation and is shown to significantly reduce dose-dependently ICAM-1, iNOS, NO, ROS and GAG production in cells exposed to IFN-γ and H. Significance Our study demonstrates that the pools of compounds of an extract from C. bergamia efficiently block the proinflammatory actions induced by IFN-γ and H on human keratinocytes. CBE may be used for topic employment in some inflammatory diseases of the skin and to represent an important opportunity for the essential oil processing industries.

Protective effects of an extract from Citrus bergamia against inflammatory injury in interferon-γ and histamine exposed human keratinocytes

GRAZIANO, ADRIANA CAROL;CARDILE, Venera;PANICO, Anna Maria
2012

Abstract

Aims The present work evaluated the anti‐inflammatory/antioxidant activity of a well characterized extract from Citrus bergamia Risso and Poiteau (CBE), containing neoeriocitrin, naringin, neohesperidin and other flavonoids, on human NCTC 2544 keratinocytes treated with interferon-gamma (IFN-γ) and histamine (H). Main methods High performance liquid chromatography (HPLC) coupled with diode array detectors was used to characterize and quantify phenolic compounds in CBE. Anti‐inflammatory/antioxidant ability on keratinocytes was determined through evaluation of inter-cellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) expression by Western blot, production of nitric oxide (NO) with Griess reagent and concentration of reactive oxygen species (ROS) by fluorescent quantitative analysis with 2′,7′-dichlorfluorescein-diacetate (DCFH-DA). Cell viability was assessed using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Antioxidant activity was also measured by oxygen radical absorbance capacity (ORAC) assay. Glycosaminoglycans (GAGs) were quantified using 1.9-dimethyl methylene blue (DMB). Key findings CBE exhibited high antioxidant activity confirmed by elevated ORAC values related to high capacity in oxygen radical scavenging. The assays on keratinocytes demonstrated that CBE does not inhibit cell proliferation and is shown to significantly reduce dose-dependently ICAM-1, iNOS, NO, ROS and GAG production in cells exposed to IFN-γ and H. Significance Our study demonstrates that the pools of compounds of an extract from C. bergamia efficiently block the proinflammatory actions induced by IFN-γ and H on human keratinocytes. CBE may be used for topic employment in some inflammatory diseases of the skin and to represent an important opportunity for the essential oil processing industries.
AIMS: The present work evaluated the anti-inflammatory/antioxidant activity of a well characterized extract from Citrus bergamia Risso and Poiteau (CBE), containing neoeriocitrin, naringin, neohesperidin and other flavonoids, on human NCTC 2544 keratinocytes treated with interferon-gamma (IFN-γ) and histamine (H). MAIN METHODS: High performance liquid chromatography (HPLC) coupled with diode array detectors was used to characterize and quantify phenolic compounds in CBE. Anti-inflammatory/antioxidant ability on keratinocytes was determined through evaluation of inter-cellular adhesion molecule-1 (ICAM-1) and inducible nitric oxide synthase (iNOS) expression by Western blot, production of nitric oxide (NO) with Griess reagent and concentration of reactive oxygen species (ROS) by fluorescent quantitative analysis with 2',7'-dichlorfluorescein-diacetate (DCFH-DA). Cell viability was assessed using 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Antioxidant activity was also measured by oxygen radical absorbance capacity (ORAC) assay. Glycosaminoglycans (GAGs) were quantified using 1.9-dimethyl methylene blue (DMB). KEY FINDINGS: CBE exhibited high antioxidant activity confirmed by elevated ORAC values related to high capacity in oxygen radical scavenging. The assays on keratinocytes demonstrated that CBE does not inhibit cell proliferation and is shown to significantly reduce dose-dependently ICAM-1, iNOS, NO, ROS and GAG production in cells exposed to IFN-γ and H. SIGNIFICANCE: Our study demonstrates that the pools of compounds of an extract from C. bergamia efficiently block the proinflammatory actions induced by IFN-γ and H on human keratinocytes. CBE may be used for topic employment in some inflammatory diseases of the skin and to represent an important opportunity for the essential oil processing industries.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/34130
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact