The design process of photovoltaic (PV) modules can be greatly enhanced by using advanced and accurate models in order to predict accurately their electrical output behavior. The main aim of this paper is to investigate the application of an advanced neural network based model of a module to improve the accuracy of the predicted output I–V and P–V curves and to keep in account the change of all the parameters at different operating conditions. Radial basis function neural networks (RBFNN) are here utilized to predict the output characteristic of a commercial PV module, by reading only the data of solar irradiation and temperature. A lot of available experimental data were used for the training of the RBFNN, and a backpropagation algorithm was employed. Simulation and experimental validation is reported.

A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module

CAPIZZI, GIACOMO;NAPOLI, CHRISTIAN;TINA, Giuseppe Marco
2012-01-01

Abstract

The design process of photovoltaic (PV) modules can be greatly enhanced by using advanced and accurate models in order to predict accurately their electrical output behavior. The main aim of this paper is to investigate the application of an advanced neural network based model of a module to improve the accuracy of the predicted output I–V and P–V curves and to keep in account the change of all the parameters at different operating conditions. Radial basis function neural networks (RBFNN) are here utilized to predict the output characteristic of a commercial PV module, by reading only the data of solar irradiation and temperature. A lot of available experimental data were used for the training of the RBFNN, and a backpropagation algorithm was employed. Simulation and experimental validation is reported.
2012
Solar energy; Solar cell; Photovoltaic modules
File in questo prodotto:
File Dimensione Formato  
R_31.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 1.44 MB
Formato Adobe PDF
1.44 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/34177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 140
  • ???jsp.display-item.citation.isi??? 120
social impact