In this paper the deposition of thin films obtained from femtosecond laser ablation of an Al(70)Cu(20)Fe(10) alloy is presented. In the plasma produced by ablation, a characteristic feature is the presence of hot nanoparticles that become evident several microseconds after the laser shot. The cooling mechanisms of these particles have been analysed together with the evolution of their composition. The results, compared with those previously obtained for Al(65)Cu(23)Fe(12) quasicrystal, reveal a clear relation between the final composition of the particles and the high-temperature equilibrium vapor pressures of the different elements, suggesting a direct emission from the target rather than a gas phase formation. Analysis of the elemental composition through the cross-section of the as-deposited films helps to illustrate the role of nanoparticles in the film growth. (C) 2008 Elsevier B.V. All rights reserved.
Titolo: | Ultra-short pulse laser ablation of Al(70)Cu(20)Fe(10) alloy: Nanoparticles generation and thin films deposition |
Autori interni: | |
Data di pubblicazione: | 2009 |
Rivista: | |
Handle: | http://hdl.handle.net/20.500.11769/3435 |
Appare nelle tipologie: | 1.1 Articolo in rivista |