We study solutions of the nonlinear Hammerstein integral equation with changing--sign kernels by using a variational principle of B. Ricceri and critical points theory techniques. Combining the effects of a sublinear and superlinear nonlinear terms we establish new existence and multiplicity results for the equation. As an application we consider a semilinear Dirichlet problem for polyharmonic elliptic operators.

Solutions of Hammerstein equations via a variational principle

FARACI, FRANCESCA;
2004-01-01

Abstract

We study solutions of the nonlinear Hammerstein integral equation with changing--sign kernels by using a variational principle of B. Ricceri and critical points theory techniques. Combining the effects of a sublinear and superlinear nonlinear terms we establish new existence and multiplicity results for the equation. As an application we consider a semilinear Dirichlet problem for polyharmonic elliptic operators.
File in questo prodotto:
File Dimensione Formato  
FM_JIEA03(Vitalyultimo).pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 176.9 kB
Formato Adobe PDF
176.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/34709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact