We present two sufficient conditions in order that a real function on a finite dimensional normed space be convex (Theorems 1.1 and 1.2) and show some consequences of them. In particular, it comes out that a real function f on a finite-dimensional Hilbert space X is convex, provided that f has the property that for each point y \in X and each \lambda > 0 the real function X \ni x \to \lambda f(x) + \|x-y\|^2 has a unique global minimum.

Two Conditions for a Function to be Convex

CARUSO, ANDREA ORAZIO;VILLANI, Alfonso
2013-01-01

Abstract

We present two sufficient conditions in order that a real function on a finite dimensional normed space be convex (Theorems 1.1 and 1.2) and show some consequences of them. In particular, it comes out that a real function f on a finite-dimensional Hilbert space X is convex, provided that f has the property that for each point y \in X and each \lambda > 0 the real function X \ni x \to \lambda f(x) + \|x-y\|^2 has a unique global minimum.
2013
Convex functions; Finite-dimensional normed spaces; Global minimum
File in questo prodotto:
File Dimensione Formato  
CarVil2013.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 492.64 kB
Formato Adobe PDF
492.64 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/3495
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact