The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 degrees and different energies of the primary particle. From these distributions, we define X-max(mu) as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X-max(mu) as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 degrees and different energies of the primary particle. From these distributions, we define X-max(mu) as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X-max(mu) as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

ARAMO, Carla;BUSCEMI, MARIO;INSOLIA, Antonio;PIRRONELLO, Valerio;
2014-01-01

Abstract

The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 degrees and different energies of the primary particle. From these distributions, we define X-max(mu) as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X-max(mu) as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.
2014
The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60 degrees and different energies of the primary particle. From these distributions, we define X-max(mu) as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of X-max(mu) as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/3512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 152
social impact