Transforming Growth Factor β1 (TGF-β1) is a well-known neuroprotective and neurotrophic factor demonstrated to play a role in synaptic transmission. However, its involvement in physiological mechanisms underlying synaptic plasticity and memory at hippocampal level has not been thoroughly investigated. Here, we examine the role of TGF-β1 in hippocampal long-term potentiation (LTP) and memory in adult wild type mice. Our data provide evidence that administration of exogenous TGF-β1 is able to convert early-phase-LTP into late-phase-LTP. Furthermore, we show that the block of the endogenous TGF-β1 signaling pathway by the specific TGF-β1 inhibitor SB431542, impairs LTP and object recognition memory. The latter impairment was rescued by administration of exogenous TGF-β1, suggesting that endogenously produced TGF-β1 plays a role in physiological mechanisms underlying LTP and memory. Finally, TGF-β1 functional effect correlates with an increased expression of the phosphorylated transcription factor cAMP-Responsive Element Binding protein.

A key role for TGF-β1 in hippocampal synaptic plasticity and memory

CARACI, FILIPPO
Primo
Writing – Original Draft Preparation
;
Gulisano W
Investigation
;
DRAGO, Filippo;PUZZO, DANIELA;PALMERI, Agostino
2015-01-01

Abstract

Transforming Growth Factor β1 (TGF-β1) is a well-known neuroprotective and neurotrophic factor demonstrated to play a role in synaptic transmission. However, its involvement in physiological mechanisms underlying synaptic plasticity and memory at hippocampal level has not been thoroughly investigated. Here, we examine the role of TGF-β1 in hippocampal long-term potentiation (LTP) and memory in adult wild type mice. Our data provide evidence that administration of exogenous TGF-β1 is able to convert early-phase-LTP into late-phase-LTP. Furthermore, we show that the block of the endogenous TGF-β1 signaling pathway by the specific TGF-β1 inhibitor SB431542, impairs LTP and object recognition memory. The latter impairment was rescued by administration of exogenous TGF-β1, suggesting that endogenously produced TGF-β1 plays a role in physiological mechanisms underlying LTP and memory. Finally, TGF-β1 functional effect correlates with an increased expression of the phosphorylated transcription factor cAMP-Responsive Element Binding protein.
2015
TGF-β1 ; synaptic plasticity; memory
File in questo prodotto:
File Dimensione Formato  
28_2015_Caraci_Scirep.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/35270
Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 99
  • ???jsp.display-item.citation.isi??? 96
social impact