In this paper, we consider a generalized Fisher equation with exponential diffusion from the point of view of the theory of symmetry reductions in partial differential equations. The generalized Fisher-type equation arises in the theory of population dynamics. These types of equations have appeared in many fields of study such as in the reaction-diffusion equations, in heat transfer problems, in biology, and in chemical kinetics. By using the symmetry classification, simplified by equivalence transformations, for a special family of Fisher equations, all the reductions are derived from the optimal system of subalgebras and symmetry reductions are used to obtain exact solutions.

Symmetry analysis for a Fisher equation with exponential diffusion

Tracinà, R.
2018

Abstract

In this paper, we consider a generalized Fisher equation with exponential diffusion from the point of view of the theory of symmetry reductions in partial differential equations. The generalized Fisher-type equation arises in the theory of population dynamics. These types of equations have appeared in many fields of study such as in the reaction-diffusion equations, in heat transfer problems, in biology, and in chemical kinetics. By using the symmetry classification, simplified by equivalence transformations, for a special family of Fisher equations, all the reductions are derived from the optimal system of subalgebras and symmetry reductions are used to obtain exact solutions.
Fisher equation; Partial differential equations; Symmetry reductions; Mathematics (all); Engineering (all)
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/357180
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 3
social impact