Amyloidogenic proteins are involved in many diseases, including Alzheimer's, Parkinson's, and type II diabetes. These proteins are thought to be toxic for cells because of their abnormal interaction with the cell membrane. Simpler model membranes (LUVs) have been used to study the early steps of membrane-protein interactions and their subsequent evolution. Phospholipid LUVs formed in water solution establish a chemical equilibrium between self-assembled LUVs and a small amount of phospholipids in water solution (CMC). Here, using both experimental and molecular dynamics simulations approach we demonstrate that the insertion of IAPP, an amyloidogenic peptide involved in diabetes, in membranes is driven by free lipids in solution in dynamic equilibrium with the self-assembled lipids of the bilayer. It is suggested that this could be a general mechanism lying at the root of membrane insertion processes of self-assembling peptides.

Phospholipids Critical Micellar Concentrations Trigger Different Mechanisms of Intrinsically Disordered Proteins Interaction with Model Membranes

Raudino, Antonio
Membro del Collaboration Group
;
La Rosa, Carmelo
2018-01-01

Abstract

Amyloidogenic proteins are involved in many diseases, including Alzheimer's, Parkinson's, and type II diabetes. These proteins are thought to be toxic for cells because of their abnormal interaction with the cell membrane. Simpler model membranes (LUVs) have been used to study the early steps of membrane-protein interactions and their subsequent evolution. Phospholipid LUVs formed in water solution establish a chemical equilibrium between self-assembled LUVs and a small amount of phospholipids in water solution (CMC). Here, using both experimental and molecular dynamics simulations approach we demonstrate that the insertion of IAPP, an amyloidogenic peptide involved in diabetes, in membranes is driven by free lipids in solution in dynamic equilibrium with the self-assembled lipids of the bilayer. It is suggested that this could be a general mechanism lying at the root of membrane insertion processes of self-assembling peptides.
2018
Amyloid, Intrisically disordered proteins, misfolding
File in questo prodotto:
File Dimensione Formato  
acs.jpclett.8b02241 (1).pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/357830
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 63
social impact