The corneal endothelium is composed of a single hexagonal-shaped cells layer adherent to the Descemet's membrane. The primary function of these cells is maintaining of tissue clarity by regulating its hydration. Trauma, aging or other pathologies cause their loss, counterbalanced by enlargement of survived cells unable to guarantee an efficient fluid pumping to and from the stroma. Regenerative medicine using human corneal endothelial cells (HCECs) isolated from peripheral corneal-scleral tissue of a donor could be an attractive solution, overcoming transplantation problems. In a previous study, we have demonstrated that HCECs treatment with pituitary adenylate cyclase–activating polypeptide (PACAP) following growth factors deprivation prevents their degeneration. However, the molecular mechanism mediating this effect has not been clarified, yet. Here, we have shown for the first time the expression of PACAP and its receptor (PAC1R) in human corneal endothelium and demonstrated that this peptide, selectively binding to PAC1R, induces epidermal growth factor receptor (EGFR) phosphorylation and the MAPK/ERK1/2 signaling pathway activation. In conclusion, our data have suggested that PACAP could represent an important trophic factor in maintaining human corneal endothelial integrity through EGFR transactivation. Therefore, PACAP, as well as epidermal growth factor and fibroblast growth factor, could co-operate to guarantee tissue physiological functioning by supporting corneal endothelial barrier integrity.

PACAP through EGFR transactivation preserves human corneal endothelial integrity

Maugeri G;D'Amico AG;Castrogiovanni P;Saccone S;Federico C;Reibaldi M;Russo A;Avitabile T;Longo A;D'Agata V
2019-01-01

Abstract

The corneal endothelium is composed of a single hexagonal-shaped cells layer adherent to the Descemet's membrane. The primary function of these cells is maintaining of tissue clarity by regulating its hydration. Trauma, aging or other pathologies cause their loss, counterbalanced by enlargement of survived cells unable to guarantee an efficient fluid pumping to and from the stroma. Regenerative medicine using human corneal endothelial cells (HCECs) isolated from peripheral corneal-scleral tissue of a donor could be an attractive solution, overcoming transplantation problems. In a previous study, we have demonstrated that HCECs treatment with pituitary adenylate cyclase–activating polypeptide (PACAP) following growth factors deprivation prevents their degeneration. However, the molecular mechanism mediating this effect has not been clarified, yet. Here, we have shown for the first time the expression of PACAP and its receptor (PAC1R) in human corneal endothelium and demonstrated that this peptide, selectively binding to PAC1R, induces epidermal growth factor receptor (EGFR) phosphorylation and the MAPK/ERK1/2 signaling pathway activation. In conclusion, our data have suggested that PACAP could represent an important trophic factor in maintaining human corneal endothelial integrity through EGFR transactivation. Therefore, PACAP, as well as epidermal growth factor and fibroblast growth factor, could co-operate to guarantee tissue physiological functioning by supporting corneal endothelial barrier integrity.
2019
epidermal growth factor receptor, human corneal endothelial cells, mitogen-activated protein kinase, pituitary adenylate cyclase–activating polypeptide, Biochemistry, Molecular Biology, Cell Biology
File in questo prodotto:
File Dimensione Formato  
PACAP through EGFR transactivation preserves human corneal endothelial integrity.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 679.56 kB
Formato Adobe PDF
679.56 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/358551
Citazioni
  • ???jsp.display-item.citation.pmc??? 15
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact