In this paper, we consider the following problem: {-Delta(g)u +V(x)u =lambda alpha(x)f(u), in M, u >= 0, in M, (p(lambda)) u -> 0, as d(g)(x(0), x) -> infinity, where (M, g) is a N-dimensional (N >= 3), non-compact Riemannian manifold with asymptotically non-negative Ricci curvature, lambda is a real parameter, V is a positive coercive potential, alpha is a bounded function and f is a suitable nonlinearity. By using variational methods, we prove a characterization result for existence of solutions for (P-lambda).

A characterization related toSchrödinger equations on Riemannian manifolds

F. Faraci
;
2019

Abstract

In this paper, we consider the following problem: {-Delta(g)u +V(x)u =lambda alpha(x)f(u), in M, u >= 0, in M, (p(lambda)) u -> 0, as d(g)(x(0), x) -> infinity, where (M, g) is a N-dimensional (N >= 3), non-compact Riemannian manifold with asymptotically non-negative Ricci curvature, lambda is a real parameter, V is a positive coercive potential, alpha is a bounded function and f is a suitable nonlinearity. By using variational methods, we prove a characterization result for existence of solutions for (P-lambda).
File in questo prodotto:
File Dimensione Formato  
Faraci-Farkas_characterization_CCM_revision 1.pdf

non disponibili

Tipologia: Documento in Pre-print
Dimensione 518.27 kB
Formato Adobe PDF
518.27 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/359068
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact