A picture, or two-dimensional (2D) string, is a rectangular array of symbols over a finite alphabet. In this paper, we introduce the notion of fullness for sets of strings and sets of pictures. Fullness is a local counterpart of completeness. While in 1D fullness coincides with completeness, in 2D complete sets of pictures are a subset of full ones. This new notion allows introducing the encoding of a picture. The definition of encoding is based on the one of cutting decomposition. If a set of pictures X is full then any picture has an encoding over X; furthermore, the encoding is unique if X is a univocally full set. Univocally full sets coincide with the maximal strong prefix codes of pictures that were recently introduced. At last, we show an encoding algorithm for pictures, which relies on a new tree data structure to represent univocally full sets

Full sets of pictures to encode pictures

M. Madonia
2019

Abstract

A picture, or two-dimensional (2D) string, is a rectangular array of symbols over a finite alphabet. In this paper, we introduce the notion of fullness for sets of strings and sets of pictures. Fullness is a local counterpart of completeness. While in 1D fullness coincides with completeness, in 2D complete sets of pictures are a subset of full ones. This new notion allows introducing the encoding of a picture. The definition of encoding is based on the one of cutting decomposition. If a set of pictures X is full then any picture has an encoding over X; furthermore, the encoding is unique if X is a univocally full set. Univocally full sets coincide with the maximal strong prefix codes of pictures that were recently introduced. At last, we show an encoding algorithm for pictures, which relies on a new tree data structure to represent univocally full sets
File in questo prodotto:
File Dimensione Formato  
Full sets of pictures to encode pictures.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Dimensione 491.83 kB
Formato Adobe PDF
491.83 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/359131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact