We develop a new point of view to introduce families of functions, which can be identified as generalization of the ordinary trigonometric or hyperbolic functions. They are defined using a procedure based on umbral methods, inspired by the Bessel Calculus of Bochner, Cholewinsky and Haimo. We propose further extensions of the method and of the relevant concepts as well and obtain new families of integral transforms allowing the framing of the previous concepts within the context of generalized Borel transform. (C) 2018 Published by Elsevier Inc.
Titolo: | Theory of generalized trigonometric functions: From Laguerre to Airy forms | |
Autori interni: | ||
Data di pubblicazione: | 2018 | |
Rivista: | ||
Handle: | http://hdl.handle.net/20.500.11769/359283 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.