Objective The role of the hydroxycarboxylic acid receptor 2 (HCA2) in the retinal damage induced by diabetes has never been explored. In this context, the present study highlights an upregulation of retinal HCA2 receptors in diabetic C57BL6J mice. Moreover, we illustrate that HCA2 receptors exert an anti-inflammatory effect on the retinal damage induced by diabetes when activated by the endogenous ligand β-hydroxybutyrate, Methodology Seven-to-10-week-old C57BL6J mice were rendered diabetic by a single intraperitoneal injection of streptozotocin (75 mg/kg of body weight) and monitored intermittently over a 10-week period extending from the initial diabetes assessment. Mice with a fasting blood glucose level higher than 250 mg/dl for 2 consecutive weeks after streptozotocin injection were treated twice a week with intraperitoneal injections of 25-50-100 mg/kg β-hydroxybutyrate. Results Interestingly, while the retinal endoplasmic reticulum stress markers (pPERK, pIRE1, ATF-6α) were elevated in diabetic C57BL6J mice, their levels were significantly reduced by the systemic intraperitoneal treatment with 50 mg/kg and 100 mg/kg β-hydroxybutyrate. These mice also exhibited high NLRP3 inflammasome activity and proinflammatory cytokine levels. In fact, the elevated levels of retinal NLRP3 inflammasome activation markers (NLRP3, ASC, caspase-1) and of the relative proinflammatory cytokines (IL-1β, IL-18) were significantly reduced by 50 mg/kg and 100 mg/kg β-hydroxybutyrate treatment. These doses also reduced the high apoptotic cell number exhibited by the diabetic mice in the retinal outer nuclear layer (ONL) and increased the ONL low connexin 43 expression, leading to an improvement in retinal permeability and homeostasis. Conclusions These data suggest that the systemic treatment of diabetic C57BL6J mice with BHB activates retinal HCA2 and inhibits local damage.

The activation of retinal HCA2 receptors by systemic beta-hydroxybutyrate inhibits diabetic retinal damage through reduction of endoplasmic reticulum stress and the NLRP3 inflammasome

Bucolo, Claudio;
2019

Abstract

Objective The role of the hydroxycarboxylic acid receptor 2 (HCA2) in the retinal damage induced by diabetes has never been explored. In this context, the present study highlights an upregulation of retinal HCA2 receptors in diabetic C57BL6J mice. Moreover, we illustrate that HCA2 receptors exert an anti-inflammatory effect on the retinal damage induced by diabetes when activated by the endogenous ligand β-hydroxybutyrate, Methodology Seven-to-10-week-old C57BL6J mice were rendered diabetic by a single intraperitoneal injection of streptozotocin (75 mg/kg of body weight) and monitored intermittently over a 10-week period extending from the initial diabetes assessment. Mice with a fasting blood glucose level higher than 250 mg/dl for 2 consecutive weeks after streptozotocin injection were treated twice a week with intraperitoneal injections of 25-50-100 mg/kg β-hydroxybutyrate. Results Interestingly, while the retinal endoplasmic reticulum stress markers (pPERK, pIRE1, ATF-6α) were elevated in diabetic C57BL6J mice, their levels were significantly reduced by the systemic intraperitoneal treatment with 50 mg/kg and 100 mg/kg β-hydroxybutyrate. These mice also exhibited high NLRP3 inflammasome activity and proinflammatory cytokine levels. In fact, the elevated levels of retinal NLRP3 inflammasome activation markers (NLRP3, ASC, caspase-1) and of the relative proinflammatory cytokines (IL-1β, IL-18) were significantly reduced by 50 mg/kg and 100 mg/kg β-hydroxybutyrate treatment. These doses also reduced the high apoptotic cell number exhibited by the diabetic mice in the retinal outer nuclear layer (ONL) and increased the ONL low connexin 43 expression, leading to an improvement in retinal permeability and homeostasis. Conclusions These data suggest that the systemic treatment of diabetic C57BL6J mice with BHB activates retinal HCA2 and inhibits local damage.
File in questo prodotto:
File Dimensione Formato  
The activation of retinal HCA2 receptors.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/361376
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 26
social impact